
1

Tracealyzer
Hands On

GettinG the most out of tracealyzer

2

Tracealyzer Hands On is a series of blog posts with handy
tips how you can get more out of Percepio Tracealyzer. This
brochure contains a selection of our Hands On posts; the

complete set is available at
percepio.com/rtos-debug-portal/

DownloaD tracealyzer at
percepio.com/DownloaD

free time-limiteD evaluation
license is incluDeD

®

Percepio AB, Västerås, Sweden
https://percepio.com

Download
Tracealyzer 4

https://percepio.com/download

free evalUation license available

WP-RTOS-101.indd 12 2018-02-19 15:08

®

Percepio AB, Västerås, Sweden
https://percepio.com

Download
Tracealyzer 4

https://percepio.com/download

free evalUation license available

WP-RTOS-101.indd 12 2018-02-19 15:08

want more free vector please visit

http://www.freevector-freeclipart.com

RUNTIME
ROCK’N’
ROLL

Tracealyzer 4

unlimited tracing • advanced live visualization • network and i/o awareness • user-defined analysis

desensitizing

®

Percepio AB, Västerås, Sweden
https://percepio.com

Download
Tracealyzer 4

https://percepio.com/download

free evalUation license available

WP-RTOS-101.indd 12 2018-02-19 15:08

Percepio AB, Västerås, Sweden
https://percepio.com

3

Tracealyzer – more than a debugging tool
When developers are stuck with a tough
debugging problem, they’ll often turn
to Tracealyzer to help them gain insights
into their system so that they can solve
the problem. This has led to Tracealyzer
gaining the reputation of being a great
debugging tool; However, Tracea-
lyzer is so much more than just a
debugging tool.

In this blog series, we will examine
several additional ways that deve-
lopers should be using Tracealyzer
besides debugging.

Start early and spot mistakes

First, developers should be using
Tracealyzer the moment they set-
up their software project and be-
gin developing their application.
The reason for using Tracealyzer
so early is that it will help developers
spot bugs and performance issues the
moment that they occur! Most users wait
until they have a problem to start tracing
but if you trace your application period-
ically through-out development, you’ll
immediately spot strange behavior or
mistakes during implementation. The
result will be less time spent debugging
which quickly correlates to less develop-
ment time and lower costs.

Next, Tracealyzer can be used to trace
embedded platform framework code
or software stacks that behave as black
boxes in application code. Many de-
velopers are starting to use embedded
platforms or software stacks that are de-
veloped by 3rd parties and could span
tens to hundreds of thousands of lines
of code. There is no fast and efficient
method available to understand how all
that code executes and interacts without
using a tool like Tracealyzer. Tracealyz-
er allows a developer to see what that
black box code is doing and then prop-
erly account for it in their design and im-
plementation.

A great example on how Tracealyzer can
be used to understand black box soft-
ware was recently published by Jacob
Beningo in A peek inside Amazon Fre-
eRTOS and A peek inside Amazon Fre-
eRTOS: Communication and memory
(both available online at beningo.com).
In these articles, the author explores the
Amazon FreeRTOS demonstration code,
which contains little to no documenta-

tion, with Tracealyzer to examine and
understand how the baseline code exe-
cutes and functions.

Simple information such as how many
tasks are in the application are discov-

ered along with more difficult to find in-
formation such as malloc and free being
called on average more than 350 times
per second. Without Tracealyzer, you
would either have to examine all the
source, a time-consuming endeavor in
an application that is ~418 kBytes, or
cross your fingers and hope for the best.

Reverse engineer those stacks

Finally, one can use Tracealyzer to re-
verse engineer a software stack. There
may be instances where a piece of soft-
ware is open source, no longer support-
ed or has major quality issues and the
only way to really move forward is to start
from scratch. If the software behavior is
at least close, a developer could trace
the stack and use that as a baseline to
compare against the more robust soft-
ware that is developed to take its place.

As we have started to see through-out
this post, Tracealyzer is much more than
just a debugging tool. It can be used
through-out the entire development pro-
cess to help developers monitor and un-
derstand their application. It can also be
used to understand existing software in
an efficient manner that doesn’t require
digging deep into source code. In the
next several posts, we’ll examine Tracea-
lyzer in more detail and understand how
to setup and use many of its functions.
We’ll also trace several software stacks
to understand how commonly used
open source software sizes up.

4

Analyzing Communication and Data Flow
in an Unknown Software Stack

One of the biggest problems in em-
bedded development today, besides
spending too much time debugging,
is understanding what a software stack
or demo that you didn’t write is doing.
Embedded systems are becoming so
complicated that the only way to build
them in a cost-effective way and within
a realistic time frame is to leverage ex-
isting components provided by 3rdpar-
ty stack providers and the microcontrol-
ler manufacturer. To be successful, we
need to understand what this software
is doing and how data flows around the
application without spending weeks
or months instrumenting or perform-
ing code reviews. In this post, we’ll ex-
amine how we can do this quickly and
easily using the Tracealyzer communi-
cation flow.

Set up the Tracealyzer recorder

Before using the communication flow,
you’ll have to set up the recorder library
and trace the application code that you
are interested in. If you have never ac-
quired a trace before, you’ll want to re-
view the user manuals “Recording Trac-
es” section for more details. This can
be done in three simple steps:

1. Open Tracealyzer.
2. Click the User Manual on the

welcome screen next to the green
question mark.

3. Click on the Recording Traces
section and review the material.

Once a developer has acquired an ap-
plication trace, they are then ready to
start exploring the applications com-
munication flow. For this post, we will
be examining the application flow from
the Amazon FreeRTOS demo applica-
tion that connects embedded targets
to Amazon Web Services (AWS). We
acquired a trace using the base demo
application on a STMicroelectronics IoT
Discovery Node which supports Ama-
zon FreeRTOS out of the box. Amazon
FreeRTOS is an excellent example be-
cause at the time of this writing, there
is little to no documentation that de-
scribes how the demonstration applica-
tion is architected or behaves and it’s
easy to imagine an IoT developer want-
ing to leverage this example in their
own code.

You can see all tasks

To get started with the communication
and data flow analysis, after acquiring
the trace and saving it, click on the
Views dropdown from the menu and
select “Communication Flow”. The
communication flow window will then
present itself and for Amazon FreeR-
TOS will look something like what you
see at the bottom of this page..

As you can see, there is a lot of useful
information displayed. Let’s look at how
we can understand what exactly is hap-
pening with the application.

5

First, you’ll notice that there are several
different shapes in the view. The rectan-
gles represent actors which in this ex-
ample are the different tasks that are in
the application. As you can see, there
are five different tasks that are interact-
ing:

• Tmr Svc
• MQTT
• MQTT Echo
• Echoing
• Logging

This doesn’t mean that there are only
five tasks in the application but five
tasks that are communicating and pass-
ing data around the application. To get
a full listing, we would want to examine
the Trace View.

Next, you’ll notice that there are ellips-
es and hexagons within the view. These
shapes indicate the direction that data
and communication is flowing. For ex-
ample, the ellipses represent unidirec-
tional communication and synchroniza-
tion objects such as semaphores. The
hexagon is used for bidirectional com-
munication such as a mutex.

Click to highlight

You can easily filter and trace the view
by clicking on an object or actor that
you are interested in. For example, if
you click on the mutex, the mutex, Tmr
Svc and MQTT shapes are all highlight-
ed along with the lines showing how
they interact. Additional information
is shown on the right-hand side of the
view. From this information, we can
see that the mutex is both sent and re-
ceived by both tasks. This tells us that
there is a shared resource that is being
protected by this mutex.

If we were trying to understand how
the Amazon FreeRTOS application
works, we could review each actor and
object and note how communication is
flowing through the application. Note
that there is a message buffer that is
being populated and sent to the echo
task. From looking at communication
flow, one can deduce that the message
buffer is data that will be sent to the
AWS cloud. Echoing prepares the data
and then puts the final message into a
queue that will be sent to the MQTT
task for transmission. At the same time,
Echoing also posts a message in a
queue that will record the action in Log
task.

Whenever you want to learn more
about an object or actor, simply dou-
ble click on it to reveal an overview. The
overview will filter all the events that in-
volve that object and allow you to fur-
ther investigate its behavior. For exam-
ple, if you double click on the Echoing
task actor, you’ll see this:

There are several useful pieces of in-
formation that we can glean from this
overview:

• Every execution including useful
information such as start, end,
execution, and response times.

• Individual instance details that
include CPU utilization among
other stats.

• Performed events which include
when the actor was blocked.

We can use this information to not only
learn about how an unknown code
base is behaving but to also verify that
the application is behaving the way that
we expect it to. For instance, we might
look through the Echoing actor over-
view and notice that the first time it ex-
ecutes its response time is milliseconds
while subsequent executions it is nearly
2 seconds!

We might see this and determine that
there is something not right about the
way the application is behaving, and
we can then dive deeper to understand
why the code is behaving this way.

The communication view is a very pow-
erful tool for developers to understand
how their application and third-party
code is behaving. It can be used to de-
bug issues with the way the application
is communicating and can be used to
just understand what the application is
doing.

The best way to fully understand how
the communication view can benefit
you is to acquire your own trace and ex-
periment with the communication view.

6

Verify Task Timing and Scheduling
Let’s face the dirty truth. There are quite
a few embedded software develop-
ers creating real-time applications that
don’t know whether their applications
meet their timing requirements. Early
in the design phase, hopefully a rate
monotonic analysis (RMA) is performed
to estimate whether the application will
be schedulable or not. But once the im-
plementation phase is started, the real
results are rarely fed back into the initial
design assumptions through verifica-
tion. In this post, we will explore how to
use Tracealyzer to verify task timing and
scheduling using the Amazon FreeRTOS
trace that we acquired in the previous
post.

The first tool one can leverage to verify
task timing is the Actor Statistics Report.
This report allows a developer to quickly
gauge information about every task in
the system such as:

• CPU Usage
• Execution times
• Response times
• Periodicity
• Separation
• Fragmentation

The execution and periodicity values
can be extremely interesting to deve-
lopers who are working to verify an RMA
model or who just want to verify timing.
The Actor Statistics report can be ac-
cessed by:

1. Clicking the Views menu
2. Clicking Actor Statistics Report
3. Selecting the desired tasks
4. Checking the desired data such as

CPU Usage, Instance Periodicity,
and so on

5. Pressing Show Report

The report data selection window pre-
sents you with all the options that can
be seen in the top left image on next
page.

Pick your statistics

The generated report may look a little
bit different based on what data you are
interested in. For example, generating a
report for the Amazon FreeRTOS demo
that includes CPU usage, execution and
response times result in the report fur-
ther down on the same page.

Notice how quickly we can get critical
information from this trace data. We
can immediately see that through-out
the entire trace, the IDLE task is utilizing
45.521% of the CPU. This tells us that
there should still be room for us to ex-
pand our application if it is done in the
right way. What really stands out is that
the MQTT task is using approximate-
ly 50% of the CPU! From the report, I
can immediately ask whether this makes
sense or whether there is something not
right with the way MQTT is implement-
ed.

Min and max execution times

We can also examine how long each
task is executed from a minimum, av-
erage and maximum standpoint. I have
always found it useful to review the
spread between these and make sure
that the minimum and maximum times
make sense for the application.

For example, I would not expect much
variation in the MQTTEcho task which
we can see varies between 465 and 1735
microseconds. On the other hand, I may
look at the MQTT task which varies from
66 microseconds to 26 seconds! Some-
thing about this task seems very fishy if
it is executing for 26 seconds, which lets
me know that I need to dive in and fur-
ther investigate what is happening with
this task.

A second tool that you can use to help
determine whether the timing on your
tasks is enough to be scheduled suc-
cessfully is the CPU Load Graphs. The
CPU Load Graphs can tell a developer if
they are getting close to maxing out the
CPU at any point during the execution
cycle.

The CPU Load Graphs can be accessed
using the following steps:

1. Click Views from the main menu
2. Click CPU Load Graphs
3. If you want the graph to be synchro-

nized to the other views, click sync

For the Amazon FreeRTOS demonstra-
tion, the CPU Load Graphs appears as
in the top right image.

Just by glimpsing at this graph we can
see that there are periods during the

7

trace where the CPU was struggling to
keep up. First, right at start-up, the CPU
is at 100% utilization for approximately
37 seconds. Any attempt to add addi-
tional code during this period will result
in schedules not being met (and they
may not be met at the moment either).

We can also notice that the main culprit
appears to be the MQTT task. Again,
multiple views seem to be suggesting
that there is something going on with
this task that requires further investiga-
tion.

Looking at the rest of the CPU Load
Graphs shows that there are periods
when the MQTT CPU utilization spikes.
Since this application sends and receives

data from Amazon Web Services (AWS),
this most likely corresponds to those
communication points. Again, providing
us with some insights that if more code
is going to be added to this application,
we will need to carefully coordinate with
the MQTT task to make sure that all
deadlines are met.

Armed with the data from the CPU Load
Graphs and the Actor Statistics Report,
we can use run-time data to determine
whether our application code is indeed
meeting the real-time deadlines and re-
sponses that we designed it to meet.
These views can be critical in catching
unexpected behavior and discovering
potential issues within the code without
having to wait for a bug to present itself.

Select data you want to include in your report. MQTT consumes a lot of CPU.

8

Understanding Your Application with User Events

Tracealyzer can au-
tomatically visual-
ize how an RTOS-
based application is
behaving, which is a
huge improvement
over the “hope and
pray” approach
often used by de-
velopers. But what
about events that
don’t automatically
show up? What if
you want to visual-
ize some applica-
tion data, measure
the time between
two events or mon-
itor how a state ma-
chine in the applica-
tion is behaving?

In this post, we will examine how you
can set up such logging in FreeRTOS
and view this information using Trace-
alyzer. Note that this post assumes you
have already done the basic integration
of the trace recorder library in FreeR-
TOS, as described in the Tracealyzer
user manual.

The first step to visualizing custom infor-
mation that is specific to your applica-
tion is to create a user event channel.
This is basically a string output chan-

nel that allows a
developer to add
their own custom
events, called User
events in Tracealyz-
er. For example, if I
wanted to transmit
sensor event data,
I would first create
the channel using
the following code:

traceString MyChannel = xTraceReg-
isterString(“DataChannel”);

In case your compiler does not recog-
nize this function, you need to #include
“trcRecorder.h”

This function registers a user event chan-
nel named DataChannel in the trace.
This makes Tracealyzer show a checkbox
for this channel in the filter panel, so you
can easily enable/disable the display of

these events. Next, I am able to use ei-
ther the vTracePrint() or vTracePrintF()
functions to record my event data. I
could transmit fixed string messages us-
ing vTracePrint as follows:

vTracePrint(MyChannel, “Button
Pressed!”);

Notice that we need to include the
channel as the first parameter and then
we issue our fixed string. If we wanted
to record variable event data, such as
changing sensor data, we could use the
vTracePrintF() function as follows:

vTracePrintF(MyChannel, “Sensor
Data = %d”, SensorData);

While the format specifiers (%d etc.) are
very similar to the classic printf function,
vTracePrintF is separate implementa-
tion where most of the heavy lifting is
done in the Tracealyzer application and
it does not yet support all the numerous
“printf” options. Specific documenta-
tion can be found in the Tracealyzer user
manual and in trcRecorder.h.

Push the button

Once user event tracing is set up, we
can record a trace containing both Free-
RTOS events and the new user events
from the application code. For example,
if I recorded events from a push button
(PB_Tx_1, PB_Tx_2) along with transmit
and receive events (Tx, Rx) to under-
stand my system timing, I can filter the
event log for User Events to see only
these events.

User events via vTracePrint or vTrace-
PrintF are typically much faster than a
classic printf because the real format-
ting is done in the host-side Tracealyzer
tool, not in runtime. Further, vTracePrint
is faster than vTracePrintF since the lat-
ter needs to scan the string to count
the number of arguments. This requires
a few more clock cycles but it’s a great
way to visualize data from the system.

For example, if I have an ADC that is
sampling a sensor and I expect to see
the data ramp up over a period of time,
I can log that sensor data (as we have
already seen) and then graph it using
the User Event Signal Plot! All I need to

User events
are a great
way to visu-
alize both
application
data and
events.

Intervals
show up in
the main
timeline.

9

do is run my system and open the User
Event Signal Plot and I would expect to
see something similar to the diagrams in
the beginning of the post.

Once we have a user event channel set
up, we can start to consider the time be-
tween events – in Tracealyzer known as
intervals. An interval represents the time
between any two events in the trace,
such as a button press and a button re-
lease. Intervals can be defined for any
kind of event, kernel events or a user
event like the ones we just defined.

Intervals are defined by you

Intervals can be extremely useful to un-
derstand important events in our system
such as:

• How long it takes to get from point
A to point B in a system (perhaps
the time between when a USB
device is plugged in and the USB
stack is ready to use)

• The execution time of a function
• The time required to start-up the

system

As you can image there are limitless pos-
sibilities that we may be interested in
examining within the system. From the
developer perspective, at a minimum,
we can use vTracePrint() to create “Be-
gin” and “End” events that we can then
use to define our own custom intervals.

Intervals are defined in Tracealyzer using
the “Intervals and State Machines” view.
The steps are as follows:

1. Click Views -> Intervals and State
Machines

2. Click Custom Intervals
3. Provide an Interval Name

4. Enter the text associated with the
starting event, such as PB_Tx

5. Enter the text associated with the
ending event, such as PB_Rx

6. Click Save

You’ll notice that the new interval “My-
Interval” gets added to the Trace View,
highlighting the time between the PB_
Tx and PB_Rx events, as shown below:

You can show any number of intervals in
parallel to highlight important parts of
your code, as long as there are corre-
sponding events in the trace.

It is also possible to get statistical infor-
mation on all occurrences of an interval
such as min, max, average time, etc. If
you right-click on the interval entry in
“Intervals and State Machines” view,
you will find further options like “Statis-
tics” and “Show Plot”.

Tables and diagrams

The “Statistics” option gives you a re-
port with descriptive statistics of the in-
terval durations, like the one shown be-
low. Here you can see the longest and
shortest durations of all such intervals in
the trace, as well as other metrics like
separation and periodicity. All min/max
values are actually links, so when you
click them Tracealyzer will show you the
corresponding location in the trace view.

To see more detailed information about
the intervals, select “Show Plot” instead.
This shows a plot over time, where X is
the timeline and the Y-axis shows the
duration of each interval, like in the ex-
ample below showing 10 short intervals
(around 5-10 ms) followed by three 100
ms intervals.

Interval statistics can be viewed as a table (above) or a plot (right).

10

Analyzing State Machines
In the previous Tracealyzer Hands On
post, we discussed how a developer can
create a user event channel to monitor
events in their application. As you may
recall, we also introduced the concept
of intervals which is the time between
any two events and can be added to the
timeline. In this post, we will take the in-
terval concept one step further and see
how we can monitor state machines.

Let’s start with a simple example. Sup-
pose that a developer has created a user
event channel for a push button, where
user events are generated in the inter-
rupt handler. The push button can have
two possible states; PB_PRESSED and
PB_RELEASED. If the developer runs
the code and occasionally presses and
releases the push button, they might
capture a user event log that looks like
the following.

You can see that we have PB_PRESSED
and PB_RELEASED events that are be-
ing generated by the ISR_EXTIO inter-
rupt. These events can be viewed as a
state machine for the push button. In
Tracealyzer, state machines generate a
special kind of interval, representing the
time between state changes as well as
the logged state. Let’s create a state ma-
chine for our push button example using
the following process.

1. Click Views -> Intervals and State
Machines

2. Click “Add Custom State Machine”
3. The New State Machine window will

appear with the options for Simple
and Advanced. Click Simple.

4. From the dropdown, select the user
channel name.

5. Click Create

At this point, you should see PBChan-
nel added to the Intervals and State Ma-
chines list. Go ahead and close the State
Machines list.

State machines can be visualized just
like any other interval in Tracealyzer.
The state visualization is very much like

a logic analyzer, but for software rather
than physical signals. You can see how
your system behavior correlates with the
system states, and you can show multi-
ple states of relevance in parallel, to see
how they overlap. The state machine
that we just created will now show up in
the trace view alongside our tasks.

You can see that the PBChannel has been
added in the far right of the trace view.
We can now examine the trace and see
how the push button state changes over
time in addition to how the system task
behavior may change when the button
is pressed. This allows us to more easily
identify any potential bugs or issues that
may exist in our code by carefully exam-
ining states and tasks in parallel.

Note that you can flip the view to a hori-
zontal orientation if you prefer that. Just
select “View” -> “Horizontal View”.

This approach for state machine visual-
ization can be used to show any kind of
state in the system, as long as the state
can be logged on a user event channel.
For example, developers can log appli-
cation state changes, low-level driver
states such as USB and TCP/IP states or
even hardware states. This only requires
the developer to take the time to instru-
ment their state changes with the vTra-
cePrint or vTracePrintF function calls.

Fields in the Trace View

The trace view is composed of fields. In
the above screenshot of the trace view,
these are labeled CPU0, Event Field and
PBChannel. The two first are shown by
default, while PBChannel was added
when we defined the state machine.

11

You can however create any number of
fields using the View -> Add Field op-
tion, e.g. multiple scheduling fields that
divides your tasks into logical groups, or
multiple state machines. Fields can be
reordered and individually configured.
You can minimize them on the timeline
or close them when no longer relevant.
Note the settings gear next to the field
name, which provides various options:

• Display size – To adjust the size of
the field

• Collapse – to minimize the field
• Select Interval – to change the in-

terval that is displayed in this field
• Close – closes the field in the time-

line

One last trick to discuss today is that once
the state machine has been defined, we
can view all observed state changes as a
graph. To do this, simply click the Views
-> State Machines Graph. All the states
and the transitions for those states will
be graphed which then allows you to go
through the graph and make sure that
no illegal state transitions occur in the
code. For our simple example, the state
machine graph is equally simple.

Case study: motor control

Many embedded applications that in-
volve motors make use of two different
state machines; the motor state and a
brake state. A motor may be in a state
such as locked, stopped, low speed,
medium speed and high speed. A brake
state might be enabled and disabled.

Obviously, if the motor is running, the
brake should be disabled, otherwise we
would undoubtedly start to see some
smoke or at a minimum a feel a bad
smell from the brake pads rubbing on
the motor. Running the motor with the
brakes engaged will force the motor
to work harder, potentially resulting in
a failure or damage to the motor. Let’s
examine a trace where a motor state
machine ramps up then down and ver-
ify that the brake behaves the way it is
supposed to.

First we add user event logging for the
state changes, as described in the earli-
er post, Understanding your Application
with User Events. This results in two user
event channels, named MotorState and
BrakeState (see above).

After acquiring the trace, we need to
make Tracealyzer aware of this state in-
formation by defining state machines
for these user event channels. As we
discussed in the previous blogs, we can
do this using the “Intervals and State
Machines” menu option under Views.
This view provides a list of all defined
state machines and interval sets, initially
empty, and provides three options for
adding new data sets. These options in-
clude:

Add Predefined – This enables pre-
defined intervals and state machines
that Tracealyzer is aware of. For exam-
ple, Tracealyzer automatically gener-
ates two interval sets for each message
queue in your trace, “Message Process-
ing” and “Queue Messages”, and if us-
ing Keil RTX5, the states of TCP sockets
can be included this way.

Add Custom State Machine – Here you
can define a state machine using either
the simple or the advanced method.
The simple method assumes that there
is a dedicated user event channel where
only state names for the specific state

12

machine is logged, while the advanced
option makes use of regular expressions
which allows you to extract state infor-
mation from any event in the trace.

Custom Intervals – This option allows
a developer to specify how to match
events to produce a custom interval set.
You specify strings to match for the Start
and End events of the interval, “Interval
Start” and “Interval End”, and intervals
are then created for all matching event
pairs.

For this blog, we are just going to use
Custom State Machine (the
simple option) to define state
machines for the BrakeState
and MotorState user event
channels. The result can be
seen here.

Notice that on the right-
hand side you can see the
MotorState and BrakeState
state machines. From a visu-
al inspection, we can see that
the brake is on at the start,
is released when the motor is
unlocked and then engages

again when the motor has stopped.

Visual inspections are great but having a
more in-depth reporting system that can
automatically analyze the trace is pre-
ferred. From the “Intervals and States
Machines” window, a developer can
right click on their custom data set and
then generate a plethora of useful views
and reports to help them understand
their application. These include:

Statistics – Generates a report for the
data set, showing min, max, average

lengths etc. This is useful for finding
extreme cases, like the longest time
between two events, and for making a
more systematic analysis of the applica-
tion by tracking important metrics that
may change as the system evolves.

Show Timeline – Opens a separate hor-
izontal trace interval, for easy correlation
with other horizontal views.

Show Plot – Gives a scatter plot showing
the durations of the intervals over time
(much like the Actor Instance graphs for
task execution times).

Compute Overlap – Creates a report
on the intersection of two data sets (i.e.
is there any time when motor and brakes
are on at the same time).

Create Inverted – Generates a new
“negated” data set, where you have
intervals corresponding to the gaps in
the original data set. This can be really
useful when combined with “Compute
Overlap”.

State machine reporting can provide us
with a wealth of information about how
a state machine is behaving but also
how it acts compared to other state ma-
chines. This is information that would
be difficult to acquire and analyze if a
developer was not using Tracealyzer. Of
course, you could hook up a logic ana-
lyzer instead, but then you would need
one output pin for each state, and you
need to analyze the results manually.
Tracealyzer makes this a lot easier.

The brake state
machine has two
states, 0 = En-
gaged and 1 =
Released. The
motor states are
in increasing order
0 = Locked; 1 =
Stopped; 2 = Low;
3 = Medium, 4 =
High, and 5 = Max
speed.

