
Using Percepio TraceRecorder with “BareMetal” systems

Tracealyzer is based on instrumentation-based tracing that works with essentially any processor
using the open-source Percepio TraceRecorder library. This offers predefined integrations for
FreeRTOS, SafeRTOS, Zephyr and Azure RTOS ThreadX, as well as a Bare Metal integration option.

The Bare Metal variant offers an RTOS-independent solution without predefined kernel tracing,
allowing for application-level tracing in any C/C++ software by custom instrumentation.

The Bare Metal option is also a good starting point for more advanced custom instrumentation
using the Tracealyzer SDK. This provides documentation and code examples for custom
integrations of the TraceRecorder library and allows for leveraging the full functionality of
Tracealyzer, including the powerful RTOS awareness.

What can be traced?

▪ Interrupt service routines (ISRs) can be traced by adding calls

to xTraceISRBegin() and xTraceISREnd() in your interrupt handlers. See the

TraceRecorder ISR functions in trcISR.h for further details. These are included in the
general public API, accessed by including trcRecorder.h. Note: If ISR tracing is not
used, the CPU time spent in ISRs will instead be attributed to the currently running task.

▪ You may log custom User Events using the functions in the trcPrint API. These are

included in the general public API, accessed by including trcRecorder.h. User events
can be used as debug messages to provide more information in Tracealyzer about what
your code is doing. User Events may also be used for data logging and can be plotted in
the User Event Signal Plot.

▪ Tracealyzer v4.7 and later also supports Runnable Tracing. Runnables is an automotive
concept corresponding to top-level functions or "sub-tasks". However, runnable tracing is
applicable and useful in most systems. With runnable tracing you can see the execution

times of specific code sections and also visualize these "runnables" in the trace view to
better understand the system execution. See trcRunnable.h for more details.

▪ Custom intervals and state variables can also be traced, either using general User
Events but also using more efficient APIs in trcInterval.h and trcStateMachine.h.

Learn more about Tracealyzer User Events, State Machines and Intervals in these blog posts:

- https://percepio.com/understanding-your-application-with-user-events/
- https://percepio.com/visualizing-state-machines/
- https://percepio.com/digging-deeper-into-state-machines-visualization/

Note that each traced event typically adds a few microseconds to the execution time, so the
execution times will be somewhat higher than without tracing enabled. The ISR tracing support is
mainly intended for debugging purposes, not for accurate profiling of ISR execution times in the
microsecond range.

Integrating the TraceRecorder

To integrate the TraceRecorder using the BareMetal option, follow these steps:

1. Decide which streamport to use, i.e. where the TraceRecorder should store or transmit the
data. Predefined streamports are found in the /streamports folder. When used with
Percepio Detect or DevAlert, select RingBuffer. This is also recommended as the starting

point for general use, since easy to get started with. This streamport writes the trace data
to a circular RAM buffer from which “snapshots” can be saved.

2. Copy the follow TraceRecorder code into your project:

TraceRecorder/*.c

TraceRecorder/kernelports/BareMetal/*.c

TraceRecorder/streamports/<StreamPort>/*.c

https://github.com/percepio/TraceRecorderSource/blob/main/include/trcISR.h#L76
https://github.com/percepio/TraceRecorderSource/blob/main/include/trcPrint.h#L58
https://github.com/percepio/TraceRecorderSource/blob/main/include/trcRunnable.h
https://github.com/percepio/TraceRecorderSource/blob/main/include/trcInterval.h
https://github.com/percepio/TraceRecorderSource/blob/main/include/trcStateMachine.h
https://percepio.com/understanding-your-application-with-user-events/
https://percepio.com/visualizing-state-machines/
https://percepio.com/digging-deeper-into-state-machines-visualization/
file:///C:/Users/johan/AppData/Roaming/Tracealyzer%20Data/help/index.html%23Creating_and_Loading_Traces___Percepio_TraceRecorder___Using_TraceRecorder_v4.6_or_later___Stream_ports

3. Add the following header files to your project. You can put all header files in the same

directory if you prefer. Make sure to update the compiler's "include paths" to ensure
all header files are found.

TraceRecorder/config/*.h

TraceRecorder/include/*.h

TraceRecorder/kernelports/BareMetal/config/*.h

TraceRecorder/kernelports/BareMetal/include/*.h

TraceRecorder/streamports/<StreamPort>/config/*.h

TraceRecorder/streamports/<StreamPort>/include/*.h

4. In /config/trcConfig.h, set TRC_CFG_HARDWARE_PORT to a suitable hardware port for
your device (see /include/trcDefines.h and /include/trcHardwarePort.h).

5. In /config/trcConfig.h, you also may need to include the processors header file. This is
needed for the Arm Cortex-M port to allow TraceRecorder to access the CMSIS-Core
definitions, but not all hardware ports need this. Remove the line #error "Trace Recorder:
Please include your processor's header file here and remove this line." and try building the

project. If don't you get any errors, you don't need the include. Otherwise include the main
header file for your processor here, e.g. #include "stm32f4xx.h". .

6. Call xTraceEnable(TRC_START) in your main() function to initialize and start the recorder.
This should be done after the initial hardware setup, but must be called before any other
TraceRecorder functions. Optionally, xTraceInitialize() can be used to initialize the trace
system without starting the tracing. Then call xTraceEnable() at a later point to start the
tracing. Other start options for xTraceEnable are described in trcRecorder.h.

For technical support, please contact support@percepio.com.

mailto:support@percepio.com

