
Copyright © Percepio AB, 2025https://percepio.com

Percepio Detect – Device Integration Guide
Version 2025.1, March 2025.
Percepio Detect is designed for systematic test monitoring and observability to provide instant in-
sight on crashes or other system anomalies across multiple devices, e.g. in a test lab or during field
testing. A typical multi-user setup for inhouse test monitoring is shown below, but you may also run
the whole solution on a single computer.

Percepio Detect consists of four parts:
· Percepio DFM: The target-side C library and the focus of this document. DFM outputs

"alerts” with debugging data. The same DFM library can also be used with Percepio DevAlert
for observability in deployment. With Percepio Detect, the DFM data is typically sent to a lo-
cal computer using a UART/serial port or similar direct connection.

· Percepio Receiver: Reads the log files from the device (DFM), extracts the alert data and
saves it as alert files for the Server. See readme-receiver.txt for details.

· Percepio Detect Server: Reads alert files from Receiver, presents a summary in the web
browser (the "Dashboard"), and provides access to alert payloads (e.g. traces and core
dumps) for deeper analysis and debugging. See readme-server.txt for details.

· Percepio Detect Client: An integrated set of tools for debugging alerts, including Tracealyzer
and tools for viewing core dumps. Runs on each user’s computer and responds to clicks on
payload links in the Dashboard. Two versions of the client are provided, a Windows version in
percepio-client-window and a Linux version (using Docker) found in percepio-client-linux-
docker. See readme-client.txt for details.

Processor support
The target-side client of Percepio Detect consists of the DFM library and supporting libraries that pro-
vide debug data (“payloads”) for the DFM alerts, for example TraceRecorder. The core parts of the
DFM library are independent of the processor used, but the supporting libraries usually have hard-
ware dependencies. At the time of writing, Percepio provides two such supporting libraries:

- Core dump support for Arm Cortex-M devices. This is based on gdb and CrashCatcher, with
Percepio improvements to allow very small core dumps, less than 600 bytes in the demo.

- Tracealyzer support using Percepio TraceRecorder, supporting several processor families and
extendable for any processor and RTOS using the Tracealyzer SDK.

https://percepio.com/
https://github.com/percepio/TraceRecorderSource
https://percepio.com/tracealyzer-sdk


Copyright © Percepio AB, 2025https://percepio.com

RTOS support
The DFM library has minimal RTOS dependencies, isolated in the DFM “kernelport” module. This
module is very small and easy to adapt for any RTOS. However, the Detect solution also uses two
other libraries for providing debugging data, TraceRecorder and CrashCatcher.
Like DFM, the TraceRecorder library also has a ”kernel port” module, providing RTOS instrumenta-
tion. There are kernelports available for various popular RTOSes in the github repository.
The demo uses the “Bare Metal” kernel port, a minimal and portable variant without RTOS aware-
ness. This allows for application-level tracing with various event logging functions and can also be
extended for full Tracealyzer kernel trace support using the Tracealyzer SDK.
To use Percepio Detect with a different RTOS, you need to replace the following files:

– TraceRecorder:
o trcKernelPort.c
o trcKernelPort.h
o trcKernelPortConfig.h
o trcKernelPortSnapshotConfig.h
o trcKernelPortStreamingConfig.h

– DFM:
o dfmKernelPort.c
o dfmKernelPort.h

Note: For more advanced software platforms like Zephyr or ESP-IDF, with integrated configuration
and build systems, and integrated core dump support, an adapted version of Percepio Detect can be
preferable to facilitate integration. Contact support@percepio.com for more information.
CrashCatcher has no RTOS dependencies. Percepio has only tested it with FreeRTOS and bare metal
applications so far, but is should work for any RTOS on Arm Cortex-M devices.

https://percepio.com/
https://github.com/percepio/TraceRecorderSource/tree/main/kernelports
https://percepio.com/tracealyzer-sdk
mailto:support@percepio.com


Copyright © Percepio AB, 2025https://percepio.com

Using the DFM Library
The device-side library, DFM, is provided as a C library under the Apache 2.0 license. DFM is intended
to be called on errors and anomalies in the device and encodes the provided data into an “alert”
packet for Percepio Detect or Percepio DevAlert.
Fault exceptions (crashes) are reported automatically, assuming that the DFM fault handler is in-
stalled as described later in this document.
You may also create custom alerts from your code, during any kind of error handling. The easiest way
is to call the DFM_TRAP macro. The below example is from the STM32 demo, where an alert is cre-
ated when pressing a button on the board.
DFM_TRAP(DFM_TYPE_MANUAL_TRACE, "Blue button pressed.", 0);

· Argument 1: The Alert Type ID, defined in dfmCodes.h.
· Argument 2: Alert description string, shown in “Details” in dashboard.
· Argument 3: Restart flag. If 1, the device is restarted by CrashCatcher after generating the

alert. If 0, the execution continues without restart.
Alert Types are defined in the Detect dashboard (Configuration → Alert Types). There are some de-
fault types like DFM_TYPE_HARDFAULT, but you may also add your own alert types here. After
adding new alert types, select Configuration → Code Export to generate a new dfmCode.h. This
workflow ensures that your DFM definitions are in sync with the server database. Do not modify dfm-
Codes.h manually.
The real power of Percepio Detect comes from the “payloads”, such as core dumps and Tracealyzer
traces, that allows for analyzing the cause of the alert. DFM_TRAP adds such payloads automatically.
A core dump payload is included by default. The TraceRecorder trace is also included if enabled in
dfmCrashCatcherConfig.h.

To view the payloads, make sure that the Percepio Detect Client has been started on your local com-
puter (contains the viewer tools) and then click the payload links in the Server dashboard.

https://percepio.com/


Copyright © Percepio AB, 2025https://percepio.com

The DFM library also includes support for stack integrity checking leveraging a GCC feature, the -fs-
tack-protector flags. If you enable one of these build flags, e.g. -fstack-protector-strong, DFM will
generate alerts if stack corruption is detected by the GCC-injected checks. Note that this GCC option
may increase the footprint of your build.
Moreover, DFM includes a Stopwatch feature for generating automatic alerts (with a trace) if the
time between vDfmStopwatchBegin and vDfmStopwatchEnd exceeds a specified limit. This can be
used both for profiling purposes and for detecting multithreading issues. Key functions are:

· dfmStopwatch_t* xDfmStopwatchCreate(const char* name, uint32_t ex-
pected_max);

Initializes a stopwatch object and returns a handle used in following calls. This is only required once.
By default, up to 4 stopwatch can be created, but the number can be changed in dfmConfig.h
(DFM_CFG_MAX_STOPWATCHES).
The ”expected_max” argument is the thredhold value in clock cycles. An alert is emitted if the time
from vDfmStopwatchBegin to vDfmStopwatchEnd exceeds this value.

· void vDfmStopwatchBegin(dfmStopwatch_t* sw);

Starts the stopwatch. This function is very small, designed for minimal overhead.
· void vDfmStopwatchEnd(dfmStopwatch_t* sw);

Stops the stopwatch and checks the elapsed time since the last vDfmStopwatchBegin call on this stop-
watch. An alert is emitted if the elapsed time exceeds the ”expected_max” limit provided to xDfm-
StopwatchCreate().

Functions are also provided for printing statistics for the stopwatch, such as the high watermark.
These can be used for basic profiling and to tune the ”expected_max” setting. See dfmStopwatch.h
for details.
As an alternative to DFM_TRAP, you can also generate user-defined alerts with custom symptoms
and/or payloads by calling the DFM Alert API. An example is shown below.

The first argument to xDfmAlertBegin() is the alert type, followed by a message string and finally a
pointer where to store the resulting alert handle. The alert handle is then used in additional calls
where more information is added to the alert. Finally, xDfmAlertEnd is called to finalize the alert. The
data is then stored and/or transmitted, depending on the DFM configuration.
The xDfmAlertAddSymptom calls are used to create a “fingerprint” that characterizes the reported
issue, provided as metadata in the alerts. This information is used to group identical alerts into “is-
sues”, displayed in the Server dashboard (Issue Overview). This provides deduplification, meaning
you don’t need to inspect each alert individually but can consider all alerts of the same “issue” as
repetitions of the same problem.

https://percepio.com/
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://github.com/johankraft/detect_basic_demo/blob/main/STM32L475-Stopwatch/DemoLibs/DFM/include/dfmStopwatch.h


Copyright © Percepio AB, 2025https://percepio.com

Each piece of fingerprint data is called a “symptom” and may include for example program counter,
stack pointer, and selected variable values. If using DFM_TRAP, default symptoms are included au-
tomatically.
DFM Device Integration
Note that Percepio provides demo projects for certain processors where these steps are already
taken care of, but the following guide assumes an integration from scratch.

1. Make sure you can print text to a serial port or similar and receive it on the host computer in
a terminal program, and log the data to a text file. If using Windows, a suitable configuration
for TeraTerm is described in Step 1. Serial Terminal Logging.

2. Integrate the DFM library as described in Step 2. DFM Library Integration.
3. For Arm Cortex-M core dump support, you need CrashCatcher integrated with DFM. This is

described in Step 3. Collecting Core Dumps with CrashCatcher.
4. To capture Tracealyzer traces in your alerts, integrate the TraceRecorder library in your

project as described in Step 4. Collecting System Traces with TraceRecorder.
Step 1. Serial Terminal Logging
To get the DFM data from the device to host, it is recommended to use a serial terminal program
with logging capabilities.
On Windows, TeraTerm is a convenient solution. On Linux, gtkterm offers a similar experience (see
below).
To configure TeraTerm to receive DFM data over a serial connection (COM port), select Setup -> Se-
rial Port. Select the right COM port (usually the last if your device was recently plugged in) and the
Speed.
Verify the UART baud rate in the demo project. If using the demo projects as starting point, the UART
speed is either 115200 or 1000000.

· STM32U585 demo project: The default baud rate is 1 MHz (1000000) and is set in console.c.
Higher speeds are possible since using the fast VCOM of the STLINK v3 on this board, but oc-
casional transmission errors have been noted if pushing the limit to 4 MHz.

· STM32L475-Basic demo project: The default baud rate is 115200, but can be increased in in
main.c, in the Console_UART_Init function. 1 MHz should be safe. The maximum speed
seems to be a bit over 2 MHz, but pushing the limit may cause occasional transmission er-
rors.

· STM32L475-Stopwatch demo project: The default baud rate is 1 MHz (1000000), but can be
increased in in main.c, in the Console_UART_Init function. The maximum speed seems to be
a bit over 2 MHz, but pushing the limit may cause occasional transmission errors.

The other settings are usually fine as is.
Next, run your embedded application and make sure the output is presented correctly.
You can now start the logging by selecting File -> Log… and stop the logging by selecting File -> Show
Log Dialog -> Close.

https://percepio.com/


Copyright © Percepio AB, 2025https://percepio.com

To start the TeraTerm logging automatically, select Setup -> Additional settings -> Log and configure
the settings like below:

Default log save folder: Where to save the log file.
Auto start logging: Checked
Log Rotate: Unchecked
Append: Unchecked
Finally, select Setup -> Save setup and overwrite the default settings file (TERATERM.INI).
If using Linux and want to use gtkterm to receive the DFM data:
- Install gtkterm. On Debian distributions using apt: “sudo apt install gtkterm”.
- Start gtkterm and ignore any warnings from the default configuration.
- Select Configuration → Port. The STLINK Virtual COM port is usually found at /dev/ttyACM0. Select
the right baud rate (115200 or 1000000, see last page).
- Enable Configuration → CR LF Auto
- Select Log → To File… and specify the log file name.
- Save your configuration using Configuration → Save Configuration, for example as “Detect”. You
can now start gtkterm with this setup by running “gtkterm -c Detect”
Step 2. DFM Library Integration
2.1. Copy the .c source code files from the DFM root folder into your project and ensure they are in-
cluded in the build.
2.2. Copy all header files from the include and config directories to a suitable “include” directory
where other header files for your project are found.
2.3. Add cloudports/Serial/dfmCloudPort.c to your project. This module specifies how to output the
data.

https://percepio.com/


Copyright © Percepio AB, 2025https://percepio.com

2.4. Also copy the header files from cloudports/Serial, i.e., include and config directories, to the same
“include” directory as in the previous step. The name “cloudport” is a bit misleading in this case, as
DFM was originally designed for cloud upload with Percepio DevAlert.
2.5. Add storageports/Dummy/dfmStoragePort.c to your project. This module specifies how to store
alert data on the device, but storage is not needed in this case. Also copy trcStoragePort.h from the
local include directory to the same “include” directory as in the previous step.
2.6. Next, have a look in the kernelport directory. If there is kernelport module matching your RTOS,
use that, otherwise select Generic kernelport. Add dfmKernelPort.c from the selected kernelport di-
rectory to your project. Copy the header files from the local include and config directories to the
same “include” directory as in the previous step.
2.7. Open dfmConfig.h and update these settings:

· DFM_CFG_PRINT(msg): Should provide a function call for printing to the serial port, e.g.
printf(msg), puts(msg) or similar.

· DFM_CFG_PRODUCTID: Set to 1 to match the “Default Product” in the Server.
· DFM_CFG_ENABLE_DEBUG_PRINT: Set this to 1 to enable error messages from the DFM

library to be printed in the serial terminal.
2.8. Add a call to xDfmInitializeForLocalUse() in the startup, for example in the main() function, right
after the initialization of the console serial output.
Note that xDfmInitializeForLocalUse() will apply special dummy values for the “Session ID” and “De-
vice ID” alert fields that are replaced by the Receiver tool. In this case, the Session ID is based on a
host-side timestamp, and the Device ID can be specified in the Receiver start script. If using other
values for DeviceID or SessionID, they will remain.
Step 3. Adding Core Dumps
DFM allows for saving device data as “payloads” when creating alerts. If you compare an Alert with
an email, the payloads are like attachments. These payloads may contain any data and may provide
data from other diagnostic libraries such as CrashCatcher and TraceRecorder.
CrashCatcher lets you collect core dumps, include registers, stack and other memory contents on
Arm Cortex-M devices.
The Percepio Payload Viewer Client includes tools for viewing CrashCatcher core dumps. Percepio
also provides an improved version of the CrashCatcher library that allows for very small core dumps
relative to the current stack pointer. By default, only the top-most 300 bytes of the stack is saved. If
the current stack depth is deeper, the earliest functions won’t be included but the recent call stack
can still be displayed. The dump size is configurable in dfmCrashCatcherConfig.h.
Core dumps can be provided both on fault exceptions (e.g. on invalid memory access) and when call-
ing DFM_TRAP() in your code.
The provided device demos already integrate the CrashCatcher library, but to integrate CrashCatcher
from scratch in your own code, follow these steps:
3.1. Get the CrashCatcher library from one of the device-integration/libraries folder.
3.2. Copy Core/src/CrashCatcher.c into your project and make sure it is included in the build.

https://percepio.com/


Copyright © Percepio AB, 2025https://percepio.com

3.3. Copy CrashCatcher_armv7m.S into your project, if using Arm Cortex-M3 or higher. For Cortex-
M0 devices or other older devices, use CrashCatcher_armv6m.S instead.
3.4. Copy Core/src/CrashCatcherPriv.h and Include/CrashCatcher.h to a suitable “include” directory
in your project where your compiler will find them.
3.5. Next, we need to hook in the CrashCatcher fault handler so it is called on fault exceptions.
3.5.1. Locate the interrupt vector table in your startup code. In the demo projects, this is found in
startup_stm32l475xx.s (or similar) in the ST directory.
3.5.2. Modify the fault exception vectors to call DFM_Fault_Handler instead of the original fault han-
dlers (e.g. HardFault_Handler, BusFault_Handler, etc.).
3.5.3. Do the same for the NMI handler. This is needed by the DFM_TRAP() macro.
3.6. Review and update the DFM_CFG settings in dfmCrashCatcherConfig.h, in particular
DFM_CFG_ADDR_CHECK_BEGIN and DFM_CFG_ADDR_CHECK_NEXT:
- DFM_CFG_ADDR_CHECK_BEGIN: The start address of RAM, where stacks are stored.
- DFM_CFG_ADDR_CHECK_NEXT: The start of the next address range, where NOT to read memory.
For example, a reserved address range after the RAM.
Since the stack dumps start at the current stack pointer and normally span a fixed number of bytes
upwards, this check is needed to avoid reading outside the valid address range if the stack pointer is
near the end. Stack dumps are truncated at ADDR_CHECK_NEXT – 1.
3.7. Open config/dfmCrashCatcherConfig.h and set DFM_CFG_CRASH_ADD_TRACE to 0 to begin
with. This disables collection of TraceRecorder traces for Tracealyzer. This can be enable later, once
TraceRecorder has been integrated.
3.8. To test the core dump feature, add a call to DFM_TRAP() in your code to trigger a core dump.

For example:
#include <dfm.h>
#include <dfmCrashCatcher.h>
...
DFM_TRAP(DFM_TYPE_ASSERT_FAILED, "My Core Dump", 0); // 0 = Don’t restart.

3.9. Run your application and verify that you get DFM data in the serial terminal.
Note: If you don’t see any output, it might be that execution is stopped by your debugger on entering
fault handlers. In that case, try resuming the execution. Many debuggers have a setting like “Halt onException” or similar. We recommend disabling that.
3.10. Process the output log using Percepio Receiver, as described in readme-receiver.txt.

https://percepio.com/
../../../../../../C:/Users/johan/Percepio%20AB%20Dropbox/Percepio%20AB%20Team%20Folder/001%20Development/050%20Percepio%20Detect/An%20example%20is%20found%20in%20https:/github.com/johankraft/detect_basic_demo/blob/main/STM32L475-Basic/st/startup_stm32l475xx.s#L151


Copyright © Percepio AB, 2025https://percepio.com

Step 4. Adding TraceRecorder traces
Percepio Tracealyzer is an advanced visual analysis tool for event traces, that is included in the Per-
cepio Payload Viewer Client. The trace data collection is done using the TraceRecorder library.
This can provide short traces (snapshots) as alert payloads. This way, you can collect detailed traces
showing the software activity just before the issue was detected.
TraceRecorder supports several popular real-time operating systems such as FreeRTOS, Zephyr,
ThreadX, PX5 as well as bare metal systems. The latter can be extended with custom instrumentation
for any RTOS using the Tracealyzer SDK.
4.1. To get started with Tracealyzer, you can sign up for a free evaluation license at https://perce-
pio.com/tracealyzer/download-tracealyzer/
4.2. Follow the integration guide at https://percepio.com/tracealyzer/gettingstarted/, corresponding
to your RTOS. For Bare Metal setups, an additional guide is provided in the device-integration folder
found in the Percepio Detect package.
4.3. Make sure to select the RingBuffer stream port, which is designed for taking snapshots of the
most recent trace data.
4.4. In dfmCrashCatcherConfig.h, set DFM_CFG_CRASH_ADD_TRACE to 1.
4.5. Run your application with a DFM_TRAP alert sometime after the xTraceEnable call (to collect
some trace data) and make sure you get DFM data output.
4.6. Make sure the output is processed by Percepio Receiver as described in percepio-re-
ceiver/readme-receiver.txt, and that the alert shows up in the Server Dashboard. Make sure that the
Percepio Client is running and click on the “.psfs” payload. This will display the trace using the Trace-
alyzer tool, included in the Client.
If you have not already installed your Tracealyzer license, you need to do that at the welcome screen
and then restart the application.
If you want to implement custom alerts (rather than using DFM_TRAP), you can add the trace data as
a DFM payload in the following way:

void* pvTraceData = (void*)0;
uint32_t ulTraceDataSize = 0;
...
xTraceDisable();
xTraceGetEventBuffer(&pvTraceData, &ulTraceDataSize);
xDfmAlertAddPayload(xAlertHandle, pvTraceData, ulTraceDataSize, “trace.psfs”);
xTraceEnable(TRC_START);

It is recommended to pause or stop the tracing before transmitting the alert, by calling xTraceDis-
able(). New data must not be added to the trace buffer while sending or storing the alert as this is
likely to cause issues.
To restart the tracing after the alert, call xTraceEnable(TRC_START). This resets TraceRecorder and
enables the tracing. Alternatively, use xTracePause() and xTraceResume(). This does not reset Trac-
eRecorder, meaning that the traces can show events spanning over multiple alerts if they occur close
in time. You may also consider adding a User Event (e.g. xTracePrintF) to mark the alert in the trace,
just before calling xTraceDisable(). This may log any information of relevance.

https://percepio.com/
https://percepio.com/tracealyzer/
https://percepio.com/tracealyzer-sdk
https://percepio.com/tracealyzer/download-tracealyzer/
https://percepio.com/tracealyzer/download-tracealyzer/
https://percepio.com/tracealyzer/gettingstarted/


Copyright © Percepio AB, 2025https://percepio.com

Learning More
The host-side setup for Percepio Detect is described in readme.txt in your Detect directory.
If you have questions or feedback, please contact Percepio at https://percepio.com/contact-us.

https://percepio.com/
https://percepio.com/contact-us

