Percepio Detect™ Demo Guide

Version 2025.1 on Windows hosts

Percepio Detect provides Continuous Observability for embedded software during
integration testing (Cl) and system testing. This lets you capture crashes, anomalies and
reliability risks in an automated way, and gain detailed insight on the causes.

Modern embedded software systems are often quite complex and many things can go wrong
in runtime. Not all issues can be found by unit testing and code reviews. There is often a long
tail of more tricky runtime issues showing up in later stages.

When issues occur outside of the debugging environment, you first need to reproduce the
issue. This step can be very difficult and time-consuming, especially for sporadic issues.

Percepio Detect enables Continuous Observability, where monitoring of faults and anomalies
is enabled early in the development, "always on” and used throughout the development,
testing, and optionally also in the field. This has the following benefits:

¢ Avoid the pains of issue reproduction. Turn "nightmare bugs” into quick fixes by
automatic capture of issues and debugging data at the first occurrence.

e Detect risks like "near misses” and multi-threading issues early, reducing the risk of
issues remaining in production code and the difficult debugging of such issues.

e Get a team dashboard on runtime issues with easy access to debugging data, so the
right developers can start debugging right away - even remotely via company VPN.

¢ Debug on production boards without debug ports. A basic UART is sufficient.

e Monitor devices in the field, for example during field testing. The data can be saved
on the device for later retrieval, enabling field use also for offline devices.

e Keep all sensitive device data and IP in your private network.

Solution Overview

The Percepio Detect solution consists of four parts, as described below.

Host PC Server

7 : | = Alert Directory N :
| Percepio Receiver I I > Percepio Server

Device
Log file
DFM :I Serial Terminal | Web browser dashboard
A 4

Developer Computer

Alert data ~>| Percepio Client |

¢ Percepio DFM: The main target-side component of Percepio Detect. This outputs
"alerts" on faults and anomalies, including debugging data from other supporting
libraries. In the demo, the data is written to the serial debug console in real time.

Copyright (c) Percepio AB, 2025

https://percepio.com

https://percepio.com

e Detect Receiver: Reads the device output, extracts the DFM data, converts it to the
expected format and saves it as alert files for the Detect Server. This is a Python
script and can be customized to accept any data encoding, e.g. Base64 or binary.

e Detect Server: Reads alert files from Receiver and presents a summary in the web
browser (the "Dashboard"). Provides easy access to debugging data provided in the
alerts, such as traces and core dumps.

e Detect Client: An integrated set of developer tools for debugging alerts, including
Tracealyzer and tools for viewing core dumps. Runs on each user’'s computer to
make it easy to debug reported issues.

Typical Setups

Percepio Detect is designed as a multi-user solution, where the server runs on a shared
server in the internal developer network. However, the whole solution can be deployed on a
single computer if desired, which is the setup used in the demo.

¢ Single-user setup: The Server, Client and Receiver runs on the same computer.
Demo data is already provided in the test-data directory.

¢ Multi-user setup: The Server runs on a shared server. Each user runs the Client on
their local development computer. The Receiver can run on any computer with
access to the device output, for example a test computer with Cl test runners.
Terminology

e Alert: A "problem report” created by the DFM library on a device.

Alert Type: The main type or reason for the alert, for example "Hard Fault”.

Symptom: A "fingerprint” of an alert, such as the code location of a fault exception.

Payload: Debugging data provided by an alert, e.g. traces and core dumps.

Issue: A group of alerts with the same Symptoms and Alert Type.

Preparation Steps
e |Install Docker Desktop from https://www.docker.com/.

e Make sure Python (v3.x) is installed.

Running the Demo
After you have completed the preparation steps above, follow these steps to run the demo.
1. Download the Percepio Detect zip file from link provided by Percepio. Before you extract

the contents, unblock it by right-clicking on the zip file and check the “Unblock”
checkbox.

2. Open the server start script, percepio-server.psl, in a text editor and locate the
assignment of the LICENSE variable. Update this with your Percepio Detect license key and
save the file.

$LICENSE="ABCD-ABCD-ABCD-ABCD"

Copyright (c) Percepio AB, 2025

https://percepio.com

https://percepio.com

Note that Tracealyzer and Detect Server have separate license keys, don’t mix them up!

3. Start Docker Desktop. Make sure it states "Engine Running" in the bottom left corner. In
case the Docker Desktop GUI doesn’t open, it might already be running. (Check for a Docker

icon in the taskbar icons.)

4. Start the Detect server by running the start script with argument "start" in a Powershell
window. Docker will download the Detect Server images from Docker Hub and start the

server.

\percepio-server.psl start

Note: To run unsigned powershell scripts, you may need to change the execution policy
using "Set-ExecutionPolicy Unrestricted”, by running PowerShell as Administrator.

5. Start the Percepio Detect client by running percepio-client.bat, found in the percepio-
client-windows folder. You can start the client by simply double-clicking the .bat file in File

Explorer.

percepio-client-windows
-
Marmn
content
coredumpviewer
dispatcher
tracealyzer
[&] core_dump_viewer.bat

tings-windows.json

[&] percepio-client.bat

percepio-client.py
[%] project-settings.bat

=| readme-client.txt

] CAWINDOWS\system32\emd. X +

Percepio Detect Client starting...

Ready.

Senast dndrad

~ O

Typ Storlek
Filmapp

Filmapp

Filmapp

Filmapp

Windows-komma... 1 kB
JSOM File 2 kB
Windows-komma... 1 kB
Python File 5 kB
Windows-komma... 2 kB
Textdokument 2 kB

6. Open http://127.0.0.1:8080 and check that you see the Server dashboard. It may take a
few seconds for the Server to start up and load the demo data. The dashboard is updated
every 5 seconds, but you may refresh the web browser manually for faster updates.

The "Issue Overview" shows a summary of all alerts in the Server database. Each row
represents all alerts classified as the same "Issue” since having identical Alert Type and
Symptoms. This simplifies overview and analysis, in case of many reported alerts.

Copyright (c) Percepio AB, 2025

https://percepio.com

https://percepio.com
http://127.0.0.1:8080

Issue Overview

o

Description ¥ Revision ¥ Count Latest Occurrence ¥ Device Id ¥ Symptoms Payloads Details Alerts
dfm_trace psfs

=
cc_coredump.dmp
cc_coredump.dmp

dfm_trace.psfs
ol View
cc_coredump.dmp

Stack corruption detected DemoSTM32L4-20250402 1 4/8/2025, 11:34:28 AM StopwatchDemoSTM32L4-20250401

Stopwatch alert

41812025, 11:34:28 AM

Hard Fault

Assert Failed DemoSTM 1 4/8/2025, 11:34:27 AM Stoj

The most important columns are:
¢ Revision: shows the version of the device software that produced the alert.

e Latest Occurrence: shows the timestamp of the most recent alert for the Issue. The
yellow highlighting indicate new alerts.

e DevicelD: An identifier of the device. This field can be overridden by the Receiver tool
to specify a more descriptive name, for example including the current test suite name.

e Symptoms: The fingerprint of the issue, used for grouping Alerts into Issues.
e Payloads: Links to debugging data from the latest alert.

e Details: Shows additional information for the most recent alert, including the size of
the payloads and the message string provided with the alert.

e Alerts: Shows all alerts of the same Issue. The Alerts page shows the complete list.

7. Lets start with classic crash debugging. Locate the "Hard Fault” row and click the link to
the provided core dump ("cc_coredump.dmp”). The core dump is now displayed in the
integrated core dump viewer, as shown below.

=== Call Stack

No locals.
#2 in run demo command (
buf=buf@entry=0x20003044 <demo_command> <error: Cannot access memory at addr
ess Ox20003044=) at i 1 1434
No locals.

No locals.
#5 in main ()
at j I |
No locals.
Backtrace stopped: Cannot access memory at address 0x20017ffc

=== Source Code =
in P eptionByIll
r = *p;
int r;
volatile unsigned int* p;

// Creating an invalid pointer)
4] (unsigned int*)0x00100000;
r *p;

Copyright (c) Percepio AB, 2025

https://percepio.com

https://percepio.com

This alert was triggered by a hard fault exception in the device. The "Call Stack” section
shows the function that failed (the top one), the function arguments and the prior function
calls in the current thread. The "Source Code” section shows the source code at the fault
location. The core dump viewer also shows other sections, like registers and disassembly.

The core dump solution is based on GDB and CrashCatcher, with Percepio improvements to
enable more compact core dumps. The examples in the demo are only 556 bytes.

Core dumps are generated automatically on processor fault exceptions by the fault handler
included in the DFM library, but can also be triggered by calling the DFM_TRAP() macro
from your application-level fault handling code.

See also Fault Exceptions below for more information about this alert type.
8. Start Tracealyzer by clicking on a trace payloads (dfm_trace.psfs). On the first start, you

need to enter your Tracealyzer license key. Select the option "Activate License", "Activate
key online” and enter your license key. Close the application.

Welcome to Tracealyzer | o

Version: 4.10.3.13291

Welcome to Tracealyzer

No license was found. Select 'Activate' and enter your license key. If you have signed up for
evaluation, an evaluation license key has been emailed to you.

| Getting Started J Learn how to get started
| Activate License J Start the license activation wizard

| Licensing J How to purchase

percepio’

9. Now lets have a look at a Tracealyzer trace from the alerts. In the Dashboard, locate
the "Stopwatch alert” row and click the link.

Stopwatch alert 2 4/8/2025, 3:01:52 PM dfm_trace.psfs w

Copyright (c) Percepio AB, 2025
https://percepio.com

https://percepio.com

Percepio Tracealyzer - Window 1

e Fnd View Uyow Vews Sooknarks Widow Help
Trace iew-veral | CPU Load Graphs - CPU Load Graph- CPUO |

QA nos v @smc view Docking | @@ 1041 v @) Syne View cPuo v Docking
ok

[0%

000G

.-Illll__ﬂﬂ.ﬂ-lll
[

0

10 000000

ISIENEINNEEEIB OO

0 I
= Novalue
— - 3870000 (5ms) 3880000 3890000 3¢ Enatle Al Disale All
]« ’

3862964 (sms)

This will open the trace in the Tracealyzer tool, included in the Detect Client. The trace data
comes from the TraceRecorder library, that supports both RTOS kernel tracing and several
kinds of application logging.

The tracing is based on kernel instrumentation and logging calls. The events are written to a
circular RAM buffer. On alerts, the trace buffer is included as a payload and shows the most
recent events before the alert. Tracealyzer traces can be included with all alert types.

The trace from the "Stopwatch alert” is generated by the Stopwatch monitoring feature in
DFM, because Ethernet interrupts delayed the main thread longer than expected.

=]
0

7er{lob] Sensor data (40), sample 4/8_|

| - |[Job] Network request |

![_lc:b] MNetwork request |

[=1]
o

___|[Job] Network request |
o

| J_. [Job] Metwork request
f

[=2]
e
b

-—[[Job] Network request |

T —I[ob] Network request |

[;‘&l_l_]l_lob] Network request |

Bl _Il_lc:b] MNetwork request | 3.595.000

JooUuanT ™

._|[ALERT] Stopwatch "Reader” reached 804197, expected: 500000 |

Trare End

The yellow labels show "User Events”, that are similar to printf calls but typically several
orders of magnitude faster than printf calls over a slow UART. User event logging allows for
adding additional details in the trace.

Initially you won’t see the yellow event labels in the trace view, because of the default zoom
level. Zoom in a few steps using the "magnifying glass” button in the upper left corner.

For clearer display, you can hide less relevant events using the Filter, found in the bottom
right. Uncheck the category "Notice Channels” to reduce the number of events displayed.

Copyright (c) Percepio AB, 2025

https://percepio.com

https://percepio.com

Note that the trace view uses a vertical time-line by default, where time flows downwards.
The threads and interrupt handlers are shown in the left-most field, where each thread and
interrupt handler ("actors” in Tracealyzer) is shown is a separate column.

In the middle, you see the "Reader jobs” column. By default this is a collapsed into a single
column, but has here been expanded using the small (+) button in the top. This column
shows a TraceRecorder "State Machine”, that is used to highlight the individual jobs
executed in the thread. This can be used for tracing any kind of state transitions.

See also Stopwatch Monitoring below for more information about this alert type.

The Demo Alert Types

Hard Fault Alerts

Crashes are often detected by the processor, for example if an invalid memory address is
used or random data is executed as code. This triggers a fault exception handler, that is it
easiest form just restarts the device or contains a loop to halt the execution. The fault handler
can also be used to log diagnostic information, but this is not always used to its full potential.

Percepio Detect can capture and report all types of Arm Cortex-M fault exceptions. This is
enabled by installing the DFM fault handler (DFM_Fault_Handler) in the interrupt vector
table. See also Step 7 above for an example.

Stopwatch Alerts

Stopwatch alerts are triggered when the time between two points in the code is longer than
expected. This can be used to monitor response time requirements and to detect issues by
their side-effect on timing. This is particularly useful on RTOS issues, like thread starvation.

Stopwatch alerts are implemented by inserting DFM function calls at the starting point and
end point of the relevant sequence. The highest expected runtime is specified when
initializing the stopwatch. If exceeded, an alert is emitted in "End” function, but only if a
new "high watermark” has been found. This avoids redundant stopwatch alerts. Multiple
stopwatches can be used in parallel and may span across different threads and interrupt
handlers. To set the alert threshold, start with a high value (to avoid many alerts), run your
tests and then inspect the High Watermark using the Stopwatch API.

You find the Stopwatch API in dfmStopwatch.h and this usage example in main_baremetal.c.

See also Step 9 above.

Stack Corruption Alerts

The DFM library includes support for GCC stack integrity checking. This requires using one
of the -fstack-protector build flags. This adds a lightweight stack integrity check when
returning from functions containing local buffers. If the stack is found to be corrupted, DFM
will emit a "Stack corruption detected” alert at the exit of the function. Note that this GCC
feature increases the code size a bit due to the added checks.

Copyright (c) Percepio AB, 2025

https://percepio.com

https://percepio.com
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

Assert Failed Alerts (User-Defined Alerts)

Assert statements are "sanity checks” added in the code, often very useful for catching bugs
in early phases. The demo project includes an assert macro (configASSERT) defined in
trcConfig.h, that uses the DFM_TRAP macro to emit an alert. The DFM_TRAP macro saves
a core dump with the stack trace, and optionally also a Tracealyzer trace. The DFM_TRAP
macro can also be called directly from your application code for user-defined alerts.

Adding New Alerts Types and Symptoms

You may add additional alert types and symptoms using the Server dashboard,
under "Configuration”. Their names are stored in the Server database and is represented by
an integer ID in on the device side for efficiency reasons, specified in the DFM library.

Open the Alert Types page. Note the "Status” column, where "Published” means that the
numeric ID is locked and can't be deleted and reused with a different meaning. This avoids
mismatching definitions in between firmware revisions.

L Lol Alert Types Add new Alert Type
A Alerts
@ Configuration A Filter for text i -
© oo Type ¥ Definition ¥ Description ¥ State ¥ Updated ctions
roducts
5 DFM_TYPE_STACK_CHK_FAILED Stack corruption detected Published 4/8/2025, 3:01:32 PM m
B Devices
4 DFM_TYPE_STOPWATCH Stopwatch alert Published 4/8/2025, 3:01:32 PM E
@ AertTypes
A 3 DFM_TYPE_HARDFAULT Hard Fault Published 4/8/2025, 3:01:32 PM ﬂ
g6 Symptoms
= Code Export 2 DFM_TYPE_MALLOC_FAILED Malloc Failed Published 4/8/2025, 3:01:32 PM E
B Documentsion v | @ DFM_TYPE_ASSERT_FAILED Assert Failed Published 4/8/2025, 3:01:32 PM m

To add a new entry, select "Add new Alert Type”.

== Dashboard w

A Alerts

New Alert Type
@ Configuration A~
Definition
@ Products
B Devices Description
@) e Severity
do Symptoms 1

= cose s -

| | Documentation v

e Definition: The name of the numeric ID in DFM. Must start with "DFM_TYPE_".
e Description: The name displayed in the dashboard.
e Severity: This has no effect (not yet implemented).

After adding new entries, go to the "Code Export” page to generate an updated dfmCodes.h.
This workflow ensures matching definitions on device and server. You can then create alerts
using your new Alert Type, for example like this:

Copyright (c) Percepio AB, 2025

https://percepio.com

https://percepio.com

DFM_TRAP(DFM_TYPE_ALERT_XYZ, "Message”, 0)

The third parameter decides if DFM should restart the device (1) after creating the alert, or if
to return and continue execution (0).

New Symptoms can be added in the same way on the Symptoms page, but is only needed if
you create custom alerts using the DFM Alert API.

Learning More

More information on how to set up and customize Percepio Detect is found in readme.txt in
root of the Percepio Detect package. You won't need that to run the demo as-is, but make
sure to read it before setting up your own customized solution.

If you have questions or feedback, please contact Percepio.

Copyright (c) Percepio AB, 2025
https://percepio.com

https://percepio.com
https://percepio.com/contact-us/

