

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

Getting Started with DevAlert 2.0
Percepio DevAlert is a cloud-based observability solution for edge devices and embedded software,

that lets you detect and analyze issues remotely during system testing, in field trials or in customer

use. If your device software would encounter an unexpected situation or misbehave for other

reasons, you will be notified right away and get all information needed to quickly solve the problem.

DevAlert uses a novel hybrid desktop/cloud architecture where all device data is easily available in

the web browser while also letting you provide your own private data storage to ensure data control

and privacy. And you can hook in your familiar desktop tools for remote debugging in a secure way.

DevAlert gives your team members a shared dashboard with remote access to diagnostic data,

automatically collected in the devices on system errors and other anomalies. This may include core

dumps, event traces and any other device data of interest.

This article explains how to set up Percepio DevAlert for monitoring local devices connected using

serial port connections. This is useful as an initial setup for getting started with DevAlert and is also

applicable for monitoring system testing on multiple devices in a test lab.

https://percepio.com/
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

DevAlert relies on a target-side client library, DFM, that is added in your embedded application. This is

responsible for encoding reports from your application into “alert” packets for DevAlert. Note that

the DFM library is passive until its API is called from your code, e.g., in an error handler. What

happens next depend on your configuration. The alert is either stored on the device and/or uploaded

to cloud storage, depending on what “cloudport” and “storageport” modules that are used. The

cloudport module defines how to output the data and the storageport defines how to read and write

the data to a local storage, such as internal flash in the device.

In this article, we will set up a solution where the alert data is transmitted from the DFM client in

your embedded system to your desktop computer using the serial port, e.g. via a UART or a local

network connection. The DFM library includes a “cloudport” for serial port transfer where the data is

printed as Hex strings, received by a serial terminal application on a host computer and then piped to

a provided “upload tool” (devalerthttps) that uploads to your DevAlert evaluation account storage.

In a production device, you may instead upload the data directly from the device to your own cloud

storage, for example using MQTT over Wi-Fi, or simply store the DevAlert data on the device for later

retrieval via a temporary connection to host computer.

DevAlert is designed with data privacy in mind and allows for using customer-hosted storage

solutions, for example an Amazon S3 bucket in your own AWS account. This way, the diagnostic

payload data never leaves your private domain. However, in this example we are using the Percepio-

hosted storage provided with the evaluation account to simplify the setup. This way, you don’t need

to configure a cloud-side integration.

This guide is targeting Arm Cortex-M devices running an RTOS such as FreeRTOS, or a bare metal

platform, but the DevAlert client (DFM) can easily be adapted for other RTOSes.

This guide is not intended for Linux-based devices. While the DevAlert architecture is capable of

supporting Linux systems and Linux support is planned for the future, the present solution has not yet

been verified for use with Linux.

Processor support
The target-side client of DevAlert, the DFM library, can be used with any embedded processor and is

optimized to fit in 32-bit microcontrollers.

The core parts of DFM are processor-agnostic and can be extended with more processor-specific

modules for adding diagnostic data in the alerts, such as core dumps and event traces.

At the time of writing, Percepio provides two such diagnostic modules:

- Core dump support for Arm Cortex-M devices based on CrashCatcher.

- Tracealyzer support using Percepio TraceRecorder, supporting several processor families and

extendible for any processor and RTOS using the Tracealyzer SDK.

The provided Core Dump solution (CrashCatcher) is specific for Arm Cortex-M, but this part can be

excluded or replaced with another core dump solution. CrashCatcher officially only supports ARMv6-

M and ARMv7-M processors (i.e. up to Cortex-M7), but we have used it successfully also on newer

ARMv8-M processors like Arm Cortex-M33.

If using a different processor family, you may exclude CrashCatcher and instead integrate a different

core dump solution. Such are sometimes provided by the processor vendor, e.g., intended for serial

port output or flash storage, for example espcoredump from Espressif. To create an alert with other

https://percepio.com/
mailto:support@percepio.com
https://github.com/adamgreen/CrashCatcher
https://github.com/percepio/TraceRecorderSource
https://percepio.com/tracealyzer-sdk

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

types of core dump data, use the function xDfmAlertAddPayload() and configure the Dispatcher tool

to launch a suitable tool or script to display the provided data, as demonstrated in this document.

RTOS support
The DFM library can be used with any RTOS assuming minor changes. The only RTOS dependency in

the DFM library is a single function for getting the name of the current task. This is only needed for

including the currently running task in the CrashCatcher integration (dfmCrashCatcher.c). This can

easily be removed or replaced with a suitable function matching your RTOS.

The TraceRecorder library requires RTOS-dependent instrumentation to record kernel events, but you

may use the “Bare Metal” option to integrate TraceRecorder without RTOS dependencies. This allows

for logging several types of events at application level. You may also extend this with your own kernel

or API instrumentation using the Tracealyzer SDK.

Note that the DevAlert client DFM includes support for Zephyr RTOS, although this is not yet fully

covered by this guide. DFM is available in the Zephyr repository as a submodule and in the manifest

since Zephyr 3.5.0, so you configure it easily using the kconfig system. A proper guide for Zephyr users

will follow. Feel free to contact support@percepio.com if you have questions or need assistance with

your integration.

Using the DevAlert Target-side Client (DFM)
The target-side client of DevAlert, DFM, is provided as a C library under the Apache 2.0 license. DFM

is intended to be called on errors and anomalies in the device and encodes the provided data into an

“alert” packet for DevAlert. A code example is shown below.

The first argument to xDfmAlertBegin() is the alert type, followed by an arbitrary message string and

finally a DfmAlertHandle_t pointer where the resulting alert handle will be stored. This is then used in

additional calls where more information is added. Finally you call xDfmAlertEnd where the data is

stored and/or transmitted, depending on the DFM configuration.

The alert types are defined in dfmCodes.h. This header file is generated using the DevAlert console

and should not be modified manually, since the definitions must reflect the cloud service database.

You can define your own alert types in the DevAlert console under Configuration -> Alert Types and

then update dfmCodes.h in Configuration -> Code Export.

The xDfmAlertAddSymptom calls creates a “fingerprint” that characterizes the reported issue, for

example using important processor registers and other information. Each piece of fingerprint data is

called a “symptom”. The fingerprint is used to group the individual alerts into “issues” displayed in

the DevAlert dashboard. This way, you don’t need to inspect each individual alert but can consider all

alerts within the same “issue” as repetitions of the same problem, assuming you have a sufficiently

detailed fingerprint. We recommend including at least the program counter and the stack pointer.

https://percepio.com/
mailto:support@percepio.com
https://percepio.com/tracealyzer-sdk
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

The real power of DevAlert comes when including “payloads” such as core dumps, system traces and

other device data. This is done using xDfmAlertAddPayload, as demonstrated below.

To view such diagnostic payloads after receiving the alert, you simply click the links in the DevAlert

dashboard. This starts the Dispatcher tool on your local computer, that downloads the payload data

and launches it in a suitable desktop tool. In the below example, we selected “crash.dmp” from a

Hard Fault alert, and Dispatcher tool launched a GDB script to display the selected core dump.

DFM also includes a macro for creating a standard Alert with a single line of code, DFM_TRAP. This is

provided as part of the Arm Cortex-M core dump support and is intended for critical errors. The

default behavior is to switch to the NMI interrupt handler, save a core dump and restart the device. It

is however easy to define similar alert macros with different behaviors. In the example below, from

dfmCrashCatcher.c, the DFM_TRAP macro is used to report stack corruption detected using a GCC

compiler feature. To enable this check, use the build flag -fstack-protector-strong.

DevAlert Device Integration
To get started with DevAlert and DFM, follow the following steps. Some require a bit more

instructions and have their own subsection after this guide. The first steps (1-11) will let you upload a

test data file and see this in you DevAlert account. Then we will set up the device integration using

the DFM library with data transfer using a serial port. Finally, we extend the solution with

CrashCatcher core dumps and Tracealyzer traces for improved remote debugging support.

https://percepio.com/
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

1. Sign up for an evaluation account at https://devalert.io/auth/signup.

2. Open the welcome email to get your temporary password.

3. Sign in at https://devalert.io/auth/login and update your password.

4. At the welcome screen, select “Activate Service”.

5. Install Python (if you don’t already have it) from https://www.python.org and make sure it is

accessible from your terminal. You may need to add it to your PATH environment variable.

6. Download the DevAlert tools from https://percepio.com/downloads/devalert-tools.zip and

extract the contents to a new directory, e.g. “devalert-tools”.

7. Open a terminal and enter your “devalert-tools” directory.

Run “devalerthttps configure” to configure the upload. The username is the email used when

registering your DevAlert evaluation account and the password is DevAlert account password.

Note that the username/password authentication in devalerthttps is only used for evaluation

accounts in order to simplify the setup. Production accounts uses mutual TLS authentication.

8. Check that devalerthttps reports “Test successful”. This usually takes about 10 seconds.

9. To test the upload tool, run the following command in your “devalert-tool” directory. This will

upload an example alert from the provided file example.log.

python devalertserial.py --upload sandbox example.log | devalerthttps.exe store-trace

If using Linux, use the devalerthttps tool instead of devalerthttps.exe.

This should result in three uploaded data chunks. It may take a few seconds for each upload.

Then close the upload tool by pressing Ctrl-C.

10. Check the dashboard at https://devalert.io. The test alert should appear after a few seconds

and should include a payload called “demo_payload.txt”.

11. Setup the Dispatcher tool to view the provided test data, as described in the section DevAlert

Dispatcher - Basic Setup below.

https://percepio.com/
mailto:support@percepio.com
https://devalert.io/auth/signup
https://devalert.io/auth/login
https://www.python.org/
https://percepio.com/downloads/devalert-tools.zip
https://devalert.io/

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

Step 11. DevAlert Dispatcher – Basic Setup

To access a payload from the DevAlert dashboard, we need to download and configure DevAlert

Dispatcher. This is a special downloader tool for DevAlert alert payloads that runs on your local

computer when you click on the payload links in the dashboard. This is the key to the unique data

control and privacy in DevAlert, as the payloads can be stored separately, outside the DevAlert

service, and don’t need to pass through Percepio servers. For evaluation accounts the storage is

hosted by Percepio for simplicity, but it is still separated from the core DevAlert service.

Dispatcher also loads the downloaded data into the right desktop tool, according to you

configuration, meaning all payloads are accessible with a single click.

11.1. Sign in to your DevAlert account and download the latest version of the Dispatcher tool from

https://devalert.io/dispatcher.

11.2. Extract all files to your “devalert-tools” directory, locate the the DevAlertDispatcher executable

and start it manually. The Dispatcher tool normally starts in a few seconds although it can take

a bit longer the first time. You should see the main screen like depicted below.

11.3. Select “Provider Setting Wizard…” and press “Next”.

11.4. Enter your username (email) and password. Select “Test” to verify the credentials. Next.

11.5. As “Backend provider” select “DevAlert Evaluation”. Next.

11.6. Dispatcher will ask you’re your username (email) and password a second time. This is for the

backend configuration. Select “Test” to verify the credentials. Next, and finish the wizard.

11.7. On the main Dispatcher screen, select “Change Dispatcher Settings…”.

11.8. Verify that “Download Link Status” reads “Handling Percepio links from DevAlert.” This is the

status of the web browser integration, where Dispatcher is registered as a protocol handler. If

the status is different, click “Enable Download Links” to register the tool manually.

11.9. Select File Mappings and select “New Mapping”. We need to create a mapping for text files

(.txt) to view the example payload.

https://percepio.com/
mailto:support@percepio.com
https://devalert.io/dispatcher

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

11.10. Select “Extension” and enter “txt”. Add the path to your preferred text editor and enter ${file}

under parameters. This is the path to payload file once downloaded.

11.11. Save and Close. Close Dispatcher.

11.12. Open your DevAlert dashboard at https://devalert.io. Click on the “demo_payload.txt” link in

the example alert. This downloads the selected payload and launches the data in the right

tool, according to your Dispatcher configuration.

Congratulations, you should now have the devalerthttps upload and Dispatcher tool working!

https://percepio.com/
mailto:support@percepio.com
https://devalert.io/

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

The next step is to set up your own alerts on your own device. This requires adding the DevAlert

client (DFM) in your embedded system. Follow the steps below.

12. Find or create a suitable demo project for your target processor in your development

environment. The demo application can be “anything”, but it is recommended to use a public

code example, e.g. from your RTOS- or processor vendor. This since parts of the memory

contents will be uploaded to Percepio-hosted evaluation storage used in this example.

13. Make sure you can print text to a serial port or similar and receive it on the host computer in

a terminal program. The terminal program needs to support logging the device output to a

file. For Windows users TeraTerm is recommended and used as example in this guide. A

suitable configuration of TeraTerm is described in TeraTerm Setup below.

14. Integrate the DFM client as described in DFM Library Integration below.

15. For Arm Cortex-M core dump support, you need CrashCatcher, CrashDebug and GDB. This is

described in Core Dumps with CrashCatcher below.

16. To capture Tracealyzer traces in your alerts, integrate the TraceRecorder library in your

project as described in Adding Tracealyzer Support below.

Step 13. TeraTerm Setup

We have found TeraTerm a very convenient serial terminal program for receiving and logging serial

port data on Windows, but there are many alternatives that often can be configured in similar ways. If

you prefer a different serial terminal application, configure that in a similar way such that the output

is logged to a file in the “devalert-tools” directory.

To configure Teraterm to receive DFM data over a serial connection (COM port), select Setup -> Serial

Port. Select the right COM port (usually the last if your device was recently plugged in) and Speed.

The other settings are usually fine as is.

Next, run your embedded application and make sure the output is presented correctly.

https://percepio.com/
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

Select Setup -> Additional settings -> Log and configure the settings like below:

Default log save folder: your Devalert tools folder

Auto start logging: Checked

Log Rotate: Unchecked

Append: Unchecked

Finally, select Setup -> Save setup and overwrite the default settings file (TERATERM.INI).

Close Teraterm and continue with Step 14 below.

Step 14. DFM Library Integration

14.1. Once you have signed up for a DevAlert evaluation account and logged in at https://devalert.io,

download the DFM library source code from https://devalert.io/dfm/files.

https://percepio.com/
mailto:support@percepio.com
https://devalert.io/dfm/files

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

14.2. Copy the .c source code files from the DFM root folder into your project and ensure they are

included in the build.

14.3. Copy all header files from the include and config directories to a suitable “include” directory

where other header files for your project are found.

14.4. Add cloudports/Serial/dfmCloudPort.c to your project. This module specifies how to output the

data. Also copy the header files from the local include and config directories to the same

“include” directory as in the previous step.

14.5. Add storageports/Dummy/dfmStoragePort.c to your project. This module specifies how to

store alert data on the device, but storage is not needed in this case. Also copy

trcStoragePort.h from the local include directory to the same “include” directory as in the

previous step.

14.6. Next, have a look in the kernelport directory. If there is kernelport module matching your

RTOS, use that, otherwise select Generic kernelport. Add dfmKernelPort.c from the selected

kernelport directory to your project. Copy the header files from the local include and config

directories to the same “include” directory as in the previous step.

14.7. Open /config/dfmConfig.h and update these settings:

- DFM_CFG_PRINT(msg): Add a function call for printing to the serial port, e.g. printf(msg),

puts(msg) or similar.

- DFM_CFG_PRODUCTID: Should be 1 to match the “Default Product” in DevAlert.

- DFM_CFG_ENABLE_DEBUG_PRINT: Set this to 1 to enable DFM error messages.

14.8. Add a call to xDfmInitialize() in the startup. Place the call in the main() function at a point

where your cloudport function (DFM_CFG_PRINT) is ready to use. In the current version of

DFM this needs two callback functions, described below.

14.8.1. xGetUniqueSessionID - Should provide the a “session identifier”. This should ideally be a

unique string that is never repeated for a particular device, for example a reboot counter that

is stored in flash memory or a wallclock timestamp if available. For an evaluation setup, you

may consider using a random number. But this is NOT recommended for production devices

this may lead to alerts being considered as identical duplicates and rejected.

14.8.2. xGetDeviceName - The second callback should provide the device name. For evaluation

purposes you may use a constant string here, like “Device123”. For production devices this

should use a unique serial number for the particular device.

Both callbacks should write the ID to the provided buffer (cBuffer) and the length of the string to

*pulBytesWritten. See the code example below.

DfmResult_t myGetSessionID(char cBuffer[], uint32_t ulSize, uint32_t* pulBytesWritten);
DfmResult_t myGetDeviceName(char cBuffer[], uint32_t ulSize, uint32_t* pulBytesWritten);

...

if (xDfmInitialize(myGetSessionID, myGetDeviceName) == DFM_FAIL)
{
 configPRINTF(("Failed to initialize DFM\r\n"));
}

...

https://percepio.com/
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

DfmResult_t myGetSessionID(char cBuffer[], uint32_t ulSize, uint32_t* pulBytesWritten)
{
 uint32_t nBytes = snprintf(cBuffer, ulSize, "%08X", <SessionID>);
 if (nBytes > 0) {
 *pulBytesWritten = nBytes;
 return DFM_SUCCESS;
 }
 return DFM_FAIL;
}

DfmResult_t myGetDeviceName(char cBuffer[], uint32_t ulSize, uint32_t* pulBytesWritten)
{
 uint32_t nBytes = snprintf(cBuffer, ulSize, "MyDevice");
 if (nBytes > 0){
 *pulBytesWritten = nBytes;
 return DFM_SUCCESS;
 }
 return DFM_FAIL;
}

14.9. After the call to xDfmInitialize(), add a test alert like in the following code example.

#include <dfm.h>

DfmAlertHandle_t xAlertHandle = 0;
char* payloadString = "My own payload from DFM";

...

if (xDfmAlertBegin(DFM_TYPE_ASSERT_FAILED, "Demo alert", &xAlertHandle) == DFM_SUCCESS) {
 xDfmAlertAddSymptom(xAlertHandle, DFM_SYMPTOM_LINE, __LINE__);
 xDfmAlertAddPayload(xAlertHandle,

payloadString, strlen(payloadString), "my_payload.txt");
 xDfmAlertEnd(xAlertHandle);
}

14.10. Build and run your project and make sure you see DFM data in the serial console.

14.11. Configure your serial terminal program to save the data to a log file (e.g. “mydevice.log”) and

upload the data like in the previous example:

 python devalertserial.py --upload sandbox <FILENAME> | devalerthttps.exe store-trace

If you are running Linux or WSL you can use:

(./devalertserial.py --upload sandbox <FILENAME>) | (./devalerthttps store-trace)

You should now see your own alert in the DevAlert dashboard.

Congratulations, you now have the full chain working from device to dashboard!

Next, if using an Arm Cortex-M device, continue with step 15 where we include CrashCatcher to

collect core dumps for source code debugging. Otherwise jump to step 16.

https://percepio.com/
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

Step 15. Core Dumps with CrashCatcher on Arm Cortex-M devices (optional)

Core dumps include registers, stack and other memory contents. They are created on the target side

using the CrashCatcher library and loaded into GDB using the CrashDebug tool. This way you can

inspecting the system state in a GDB client and also load the core dump in for example the Eclipse

GDB-based debugger, or in other debugging tools using GDB. In this way, you can view core dumps

from remote devices using your familiar debugger using all its’ provided views for inspecting the

memory, special registers and more.

Core dumps can be provided both on fault exceptions (e.g. on invalid memory access) and when

calling DFM_TRAP() in your code. The integration between DFM and CrashCatcher is provided by

dfmCrashCatcher.c so you don’t need to define these alerts yourself. Just follow the steps below. Note

that CrashCatcher is intended for Arm Cortex-M devices only, but for other processors it is possible to

integrate other core dump solutions in a similar way.

15.1. Get the CrashCatcher library from https://github.com/adamgreen/CrashCatcher.

15.2. Copy Core/src/CrashCatcher.c into your project and make sure it is included in the build.

15.3. Copy the assembly file CrashCatcher_armv7m.S into your project, if using Arm Cortex-M3 or

higher (also for Arm Cortex-M33 and other Armv8-m devices). For Cortex-M0 devices, use

CrashCatcher_armv6m.S instead.

15.4. Copy the following header files to a suitable “include” directory in your project where your

compiler will find them:

• Core/src/CrashCatcherPriv.h

• Include/CrashCatcher.h

15.5. Open and edit the .S file as described in CrashCatcher Fault Exception Handlers in the separate

section below.

15.6. Download CrashDebug from https://github.com/adamgreen/CrashDebug/tree/master/bins

and save all files in your devalert-tools directory, i.e. next to the Dispatcher tool.

15.7. Make sure you have GDB for Arm Cortex-M devices. If using a GCC-based development tool you

should already have this (arm-none-eabi-gdb) on your computer, otherwise download the Arm

GNU toolchain from https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads.

15.8. Copy the arm-none-eabi-gdb executable to your devalert-tools directory.

15.9. Open the template subdirectory provided with the Dispatcher tool. Select crash_debug.bat if

using Windows or crash_debug.sh if using Linux and copy this to the devalert-tools directory.

Do not run the script directly from the template directory, it needs to be in the same directory

as the GDB and crashdebug executables.

https://percepio.com/
mailto:support@percepio.com
https://github.com/adamgreen/CrashCatcher
https://github.com/adamgreen/CrashDebug/tree/master/bins
https://developer.arm.com/downloads/-/arm-gnu-toolchain-downloads

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

15.10. Start Dispatcher and select “Change Dispatcher Settings…”.

15.11. Select File Mappings -> New Mapping.

15.12. Select Extension and enter dmp as file name extension to match.

15.13. For Executable, select your crash_debug script in the devalert-tools folder.

15.14. Check the setting “Create Window”.

15.15. Under Parameters, add the following three parameters (in this order):

• The path to your project’s ELF file (the binary from your compiler). If using Windows, this

path must use forward-slashes (expected by GDB).

As a first test you can hardcode this path to your local build output directory. Later on, you

may consider using the variable ${revision} in the ELF path in order to look up an archived ELF

file of a specific version. The ${revision} variable gives the DFM setting

DFM_CFG_FIRMWARE_VERSION (see dfmConfig.h) from the target device.

• ${file} – This provides the path to the downloaded payload file, in this case the CrachCatcher

core dump file.

• --gdb – Add this optional parameter to make the GDB window remain open. This way you can

run GDB commands to inspect the core dump in further detail. If omitted, the script will

instead create a text file with the GDB output and display that in the default text editor.

15.16. Save the File Mapping and close Dispatcher.

15.17. Open config/dfmCrashCatcherConfig.h and set DFM_CFG_CRASH_ADD_TRACE to 0. We will

enable the Tracealyzer traces in a later step.

15.18. Open CrashCatcherPriv.h and locate the setting CRASH_CATCHER_STACK_WORD_COUNT.

CrashCatcher sets up its own stack for the exception handling and this needs to be sufficiently

large for the DFM_CFG_PRINT function. Increase this to 250-300 to be on the safe side.

15.19. To test the core dump feature, add a call to DFM_TRAP() in your code to trigger a core dump

and restart. For example:

 #include <dfm.h>
 #include <dfmCrashCatcher.h>

 ...

 DFM_TRAP(DFM_TYPE_ASSERT_FAILED, "My Core Dump");

15.20. Run your application and inspect the serial terminal output carefully to ensure it is complete,

i.e., that each data block ends with a checksum. Start the upload tool if not already running

and your new alert should appear in the dashboard, with the core dump as a “dmp” payload.

Note: If your debugger halts the execution directly in the hard fault handler, you need to

resume the execution for the alert data output to occur. This usually happens because of a

setting in your debugger tool. In Eclipse-based IDEs, this is usually found in the Debug

Configuration -> Startup -> “Halt on Execution”.

15.21. Click on the “dmp” payload and Dispatcher will start your GDB script to show the core dump.

Congratulations, you should now have core dump support in DevAlert!

https://percepio.com/
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

You may also load core dumps into your IDE debugger, assuming it used GDB. See Appendix A for an

example using STM32CubeIDE. This approach works in most Eclipse-based IDEs and other IDEs based

on GNU tools. Next, continue with Step 16 where we add Tracealyzer traces in your alerts.

Step 15.5. CrashCatcher Fault Exception Handlers

Open and edit the .S file in the CrashCatcher directory, that defines the hard fault exception handler.

This is CrashCatcher_armv7m.S or CrashCatcher_armv6m.S depending on your processor type. Arm

Cortex-M0 devices should use the …armv6m.S file, while Arm Cortex-M3 or later should use

…armv7m.S.

By default, only HardFault_Handler is defined but we can extend this to cover additional fault

handlers, as shown below.

For DFM_TRAP to work, we need to add the NMI_Handler here. Locate the references to

“HardFault_Handler” and add “NMI_Handler” in the same way. If you have enabled other fault

exceptions like BusFault or UsageFault in your setup, add them as well.

Finally, make sure that the CrashCatcher exception handers are used instead of the default handlers

in the interrupt vector table.

The size of the core dump can be configured and may include multiple memory ranges. By default,

the CrashCatcher integration in DFM stores the last 300 bytes relative to the stack pointer. If using an

RTOS, this will be the stack pointer of the currently running task. 300 bytes is usually sufficient to see

the most recent function calls and GDB can show incomplete stacks where the earliest calls are

missing. You may however configure the stack capture size in dfmCrashCatcherConfig.h. To include

additional memory ranges, see the “CRASH_MEM_REGION” settings in dfmCrashCatcher.h.

Next, continue with step 15.6 above.

https://percepio.com/
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

Step 16. Adding Tracealyzer Support (optional)

Percepio Tracealyzer is a visualization tool for event traces that simplifies debugging, especially for

more complex issues in multithreaded RTOS applications. This can be used within DevAlert by

integrating the TraceRecorder library and providing the trace data as an alert payload. This way, you

can collect traces on system errors and anomalies showing the timeline of events just before the alert

was created.

Tracealyzer supports a number of common real-time operating systems using different tracing

libraries, e.g. LTTng for Linux and Percepio TraceRecorder for MCU-class RTOSes. The DevAlert client

library, DFM, has so far only been tested with the Percepio TraceRecorder. This includes support for

FreeRTOS, SafeRTOS, Zephyr, ThreadX, PX5 and bare metal systems. The latter can be extended with

custom instrumentation for any RTOS or similar C/C++ system using the Tracealyzer SDK.

16.1. To get started with Tracealyzer, sign up for a free evaluation license at

https://percepio.com/tracealyzer/download-tracealyzer/

16.2. Follow the integration guides at https://percepio.com/tracealyzer/gettingstarted/, in line with

the specific instructions below. Additional information is found in Tracealyzer User Manual (see Help

menu), in particular the section “Creating and Loading Traces”. This is the place to go if you want to

configure a bare metal integration.

16.3. Make sure to select the RingBuffer stream port, which is designed for taking snapshots of the

most recent trace data.

16.4. In your alerts, add the trace data as a payload in the following way:

 void* pvTraceData = (void*)0;
 uint32_t ulTraceDataSize = 0;

 ...

 xTraceDisable();

 xTraceGetEventBuffer(&pvTraceData, &ulTraceDataSize);

 xDfmAlertAddPayload(xAlertHandle, pvTraceDatar, ulTraceDataSize, “dfm_trace.psfs”);

Note that it is recommended to call xTraceDisable() before calling xTraceGetEventBuffer() if interrupts

are enabled at the point of the alert. If the device isn’t restarting after the alert, you may add

xTraceEnable(TRC_START); after the xDfmAlertEnd() to resume the tracing.

You may also consider adding a User Event (e.g. xTracePrintF) to mark the alert in the trace. You may

add multiple such events or add additional parameters to log any information of relevance. Make

sure add these calls before calling xTraceDisable() or xTraceGetEventBuffer().

16.5. In Dispatcher, add a File Mapping for Tracealyzer, with the parameter “/open ${file}” as

demonstrated below.

https://percepio.com/
mailto:support@percepio.com
https://percepio.com/tracealyzer/
https://percepio.com/tracealyzer-sdk
https://percepio.com/tracealyzer/download-tracealyzer/
https://percepio.com/tracealyzer/gettingstarted/

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

16.6. Open config/dfmCrashCatcherConfig.h and set DFM_CFG_CRASH_ADD_TRACE to 1.

16.7. Run your application with the DFM_TRAP alert (see Step 15.19) and make sure it is uploaded.

16.8. You should now see an alert with a “dfm_trace.psfs” payload. Click it and Dispatcher should

start Tracealyzer and load the trace.

Congratulations, you should now have Tracealyzer support enabled in DevAlert. To learn more about

Tracealyzer, see e.g. https://percepio.com/tracealyzer/ and https://percepio.com/category/handson/.

If Tracealyzer doesn’t start in 10 seconds or so, check if you have another open Tracealyzer instance

and close that first.

You have now completed the DevAlert getting started guide and have a DevAlert setup for using serial

port transfer to your evaluation account. To use DevAlert in other ways, for example uploading the

alerts directly from the device to cloud, you need a production account and other cloudport and

storageport modules. This may require developing custom modules to get your desired setup. This is

not covered by this guide but there are example modules included in the DFM repository. Note the

modules under kernelports/<RTOS>. For example kernelports/FreeRTOS/AWS_MQTT, which is

intended MQTT upload to AWS IoT Core. This allows for storing the data in your own AWS account.

If you want assistance with setting up DevAlert for your needs, or have general questions, feel free to

contact support@percepio.com or sales@percepio.com.

https://percepio.com/
mailto:support@percepio.com
https://percepio.com/tracealyzer/
https://percepio.com/category/handson/
mailto:support@percepio.com
mailto:sales@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

Appendix A. Loading Core Dumps into STM32CubeIDE

Once a core dump has been downloaded using DevAlert, you may consider loading it into your IDE

debugger instead of only viewing it in the GDB window. This way you can leverage all you IDE

debugger views, just like if debugging a local device that is halted on a break point.

This approach can be used with most IDEs that rely on GNU tools like GCC and GDB.

A.1. Extend your crash_debug script with the following commands to copy the core dump file to a

known location. The ELF file is also copied in this case, although that isn’t strictly necessary. Note that

the below example is for Windows.

 copy /y %1 latest.elf

 copy /y %2 latest.dmp

A.2. Open Debug Configuration and add a new entry, of the type “GDB Hardware Debugging” and call

it “LoadCoreDump” or similar. On the first page, it is recommended to check “Disable auto build”.

https://percepio.com/
mailto:support@percepio.com

Copyright © Percepio AB, 2023
https://percepio.com
Technical support: support@percepio.com

A.3. On the Debugger page, as GBD Command enter the path to your gdb executable in your devalert-

tools directory, e.g., C:\da-tools\arm-none-eabi-gbd.exe.

A.4. On the Startup page, check Load Image and Load Symbols. Then enter the following under Run

Commands:

target remote | C:/da-tools/CrashDebug.exe --elf C:/da-tools/latest.elf --dump C:/da-

tools/latest.dmp

Make sure to update the file paths to match your “devalert-tools” directory. Note that

CrashDebug.exe requires forward slashes in the paths or double backslashes on Windows.

A.5. Save the Debug Configuration.

A.6. Download a core dump payload from the DevAlert dashboard (it will show the latest

downloaded).

A.7. Start your new Debug Configuration in STM32CubeIDE.

https://percepio.com/
mailto:support@percepio.com

