Tracealyzer for VxWorks — Overview and Getting Started Guide
Percepio Application Note PA-031

ateslyter - Window | - O Praigram Files\Percepioh Trscesbyzer 4\iWrneks\ deme_sxwesks.anr

T
nd View Layout Views Bookmwks Window Help

[- | CPULeid G
@ g s

%

- BSne Ve Booltion chub -

Seave] v 3

REIT

| mseranwaa |
\\ {magibbecenaMagd 2 rahrms stes 260 i
|| et
| b S s s 400 |
hec Mg] s e 530 |

a0t |

{[Btwe] vakan 19 |

:
‘
:
[]
(ot Vs '
! .
.
" : o§ i s Q2w
. AR
a B a -
. - E— i vy V) o
_ Ha'Vs
. | | magaReces a3 1) s afer 35 s 0 100000 200000 300.000 00000 500,000 £00000

Tracealyzer is a trace visualization and analysis tool for embedded software developers. The recently
released Tracealyzer version 4 for VxWorks gives the developer an unprecedented insight into the
runtime behavior, leading to reduced troubleshooting time and improved software quality,
performance and reliability.

Tracealyzer does not depend on special trace hardware which means that it can be used even outside
the development lab, e.g. in field testing or as a flight recorder in deployed systems. The latter mode is
particularly useful when developers are trying to capture a rare error that is hard to reproduce.

Tracealyzer does more than simply display the recorded data. It actually understands the meaning of
VxWorks kernel events and leverages this to provide more advanced visualization of standard
VxWorks traces. Apart from the innovative trace view, Tracealyzer also provides several other views
like the Communication Flow, which is a dependency graph showing how tasks and other VxWorks
objects are interacting in runtime. Another example is the Object Utilization view, showing the
allocation of kernel objects over time (e.g. the size of message queues). All these views are
interconnected in intuitive ways, just double-click on a data point to open a related view focused on
the same data point, showing a different perspective and abstraction level. For instance, double-
clicking on a “msgQReceive” event in the trace view opens the Object History view, showing all
operations on that particular message queue. With multiple connected views at different abstraction
levels, you can spot anomalies using the high-level overviews, like the CPU Load Graph and Statistics
Report, and easily drill down to inspect the detailed events causing the anomaly.

The sophisticated visualization offered by Tracealyzer makes the trace data more accessible and
usable, allowing developers to speed up debugging and verification.

Tracealyzer can be used side-by-side with traditional debugging tools such as those available in Wind
River Workbench and complements a source-code debugger with several additional views on system
level, ideal for understanding real-time issues and rare anomalies where a classic source-code
debugger is not sufficient.

Installing Tracealyzer for VxWorks

Download the Tracealyzer package by registering at percepio.com/download and make sure to specify
VxWorks as target platform. You may also request a free, time-limited evaluation license together with
the download. Full licenses are available through Percepio’s distributor network and from its web
store. University students and academic researchers may request a free academic license. See
percepio.com/licensing for more information.

Tracealyzer is a .NET application that runs natively on Windows and also on Linux assuming Mono, an
open-source .NET framework endorsed by Microsoft, is installed. Mono is included in most Linux
distributions, and can otherwise be downloaded from http://www.mono-project.com. We
recommend using the latest version of Mono, at the time of writing v5.14. For further instructions, see
this FAQ entry with distribution-specific instructions.

Using Tracealyzer with VxWorks

Tracealyzer for VxWorks works with trace files from the VxWorks tracing library, wvLib. Those traces,
stored in .wvr format, contain kernel events like context switches and kernel API calls, and may also
include “User Events” logged from the application code using the wvEvent function in wvLib.

Host PC
. . Tracealyzer for VxWorks
Application Software
4\
User Events
¥
wuib > M
A

Kernel Events

VxWorks Kernel

Target System CPU

The VxWorks tracing library buffers the trace data in an internal RAM buffer, which can be saved to a
target-side file (continuously or when the tracing is stopped), or transferred continuously via a TCP
socket.

To trace your VxWorks system, you first need to make sure that your VxWorks Image project has been
configured to include wvLib (for Wind River System Viewer) and that it uses a high-resolution
timestamp driver.

Tracealyzer includes a small library for VxWorks (see tracealyzer.c/.h in the VxWorks folder) that
allows for configuring, starting and stopping the recording, and also for storing formatted user events.
This is intended as a simplified interface to the integrated VxWorks recorder. Include tracealyzer.c and
.h in your application and use the functions listed below to configure and control tracing.

The easiest way to record traces using the Tracealyzer library is with the default settings. In that case,
you only need to call tzStart() to begin the recording and tzStop() when you have finished your test

https://percepio.com/download/
https://percepio.com/licensing
http://www.mono-project.com/
https://percepio.com/2018/09/11/running-tracealyzer-4-on-linux-hosts/

case. In the default setup, the trace is kept in a RAM buffer during the recording and stored to a file
("tz.wvr") on the target device when tzStop is called. Thus, the trace length is limited to the size of the
trace buffer (by default 256 KB). If the buffer becomes full before tzStop is called, older events will be
overwritten.

STATUS tzStart (int tracelevel)
Starts tracing. The parameter “traceleve

|II

decides the level of detail, valid options are:

- TZ TRACE LEVEL CONTEXT SWITCH: Only context-switches (tasks and ISRs).
- Tz TRACE LEVEL TASK STATE: Adds task state changes (ready, etc.)
- TZ TRACE LEVEL OBJECT AND SYSTEM: All details (recommended).

STATUS tzStop (void)
Stops tracing and may also store the trace, depending on the Storage configuration (see
tzConfigStorage).

STATUS tzEvent (char* channelName, char* formatStr, ...)
Stores a formatted User Event (see section “Tracing Application Code with User Events”).

All functions return 0 if successful.

Custom Trace Configuration
The functions tzConfigStorage () and tzConfigBuffer () may optionally be called prior to

tzStart, in order to apply a custom tracing configuration.

STATUS tzConfigStorage (int storageMode, int storageMethod, char* argl, int
arg2, int storeOnStop)

Configures how traces are stored.

You may omit the configuration call; default settings are then used, corresponding to the following
setup:

tzConfigStorage (TZ MODE DEFERRED, TZ METHOD FILE, "tz.wvr", O CREAT |
O _TRUNC, 1)

Valid options for parameter storageMode are:

e TZ MODE CONTINUOUS (= 0): Trace is continuously written to a file or socket.
e Tz MODE DEFERRED (= 1): Trace is stored on command (tzStop).

Valid options for storageMethod are:

e Tz METHOD FILE (=0): Trace is stored on the target file system.

e Tz METHOD SOCKET (= 1): Trace is uploaded to host via a TCP socket. Tracealyzer can
receive traces via TCP sockets, but this mode is not yet fully supported for VxWorks as of
v4.2.12. We aim to support this option soon.

Parameters argl and arg2 depends on the setting for storageMethod.
If using Tz METHOD FILE:

e argl should be the path of the target-side trace file
e arg2is the file open attributes/flags — should be “O_CREAT | O TRUNC”

If using storageMethod TZ METHOD SOCKET

e arglshould be the address of the host computer that is to receive the trace.
e arg 2 should be the TCP port of the receiving computer,

The parameter storeOnStop is only relevant if storage mode is T2 MODE DEFERRED. If
storeOnStop is set to 1, calling tzStop will also store the trace to the specified file.

Some example setups

Continuous tracing to file. Allows for long traces. Continues until tzStop is called.
tzConfigStorage (TZ MODE CONTINUOUS, TZ METHOD FILE, "tz.wvr", O WRONLY, O0)

Deferred tracing to file. The latest events are kept in a RAM ring-buffer and saved to file when tzStop

is called.
tzConfigStorage (TZ MODE DEFERRED, TZ METHOD FILE, "tz.wvr",
O _CREAT|O TRUNC, 1)

Tracealyzer can receive traces via TCP sockets, but this mode is not yet fully supported for VxWorks as
of v4.2.12. We aim to support this option soon.

STATUS tzConfigureBuffer (int bufferCount, int bufferSize)

Configures the size of the trace buffer (rBuff), expressed in the number of sub-buffers and the size of
each sub-buffer. If this call is omitted, a default configuration is used (4 x 64 KB). When using deferred
tracing to file, this decides the length of the trace. When using continuous tracing, this buffer size may
impact the maximum throughput of the tracing.

To view the resulting .wvr trace file, select File -> Open in Tracealyzer, or simply drag the file to the
Tracealyzer main window.

For more details about the Tracealyzer Library for VxWorks, including other tracing configurations,
please refer to the code documentation in tracealyzer.h. For now, we recommend using

TZ METHOD FILE with deferred or continuous storage, as socket mode is not fully supported in
Tracealyzer 4.2. Note that you may also record traces using Wind River Workbench and view the
resulting .wvr files in Tracealyzer.

Tracing Application Code with User Events

The VxWorks trace recorder (wvLib) allows you to store custom events from your application using the
function wvEvent () . This allows for writing binary data to the trace buffer.

STATUS wvEvent (event t usrEventId, char* buffer, size t bufSize)

Tracealyzer can display these events, but makes no interpretation by default and displays them as raw
data. You may however use the User Event Interpretations (see the View menu) to set up formatting
rules for displaying VxWorks events in Tracealyzer. This allows Tracealyzer to extract strings and values
that can for instance be plotted in a User Event Signal Plot.

There is another, easier way to add formatted log messages to your trace — use
the tzEvent() function found in the Tracealyzer Library for VxWorks. When using tzEvent, it is not
necessary to use the User Event Interpretations feature needed for native wvEvents.

STATUS tzEvent (char* channelName, char* formatStr, ...)

file:///C:/Program%20Files/Percepio/Tracealyzer%204/VxWorks/

The tzEvent function provides an interface similar to a classic printf, but the actual formatting is
done off-line in the Tracealyzer visualization which makes tzEvent much faster than a printf.
Moreover, unlike a printf you get the information visualized in the Tracealyzer views, which allows you
to correlate the event with other recorded events, such as scheduling and system calls.

The parameters of tzEvent() are:

e channelName: A textual name that specifies the User Event Channel of the event, that allows
the user events to be filtered easily. This name is displayed in the Filter view, under the User
Event category.

e fmtString: Aformat string allowing for text and format specifiers like a classic printf, that
allows you to embed data arguments into the string. This does not use the stdio formatting,
but most common format specifiers from printf are supported. See tracealyzer.h for details.

e data arguments: Optionally, you can include a variable number of data arguments, as
specified by the format string.

Example usage
tzEvent ("Debug", "Entering function foo()");
tzEvent ("Voltage Ul", "Ul: %1f v", voltage ul);

tzEvent ("MyState", "%s", fsmlStateNames|[newStatelID]);

By default, formatted user events are limited to 256 bytes, which shall contain channel name and
format string (including null-terminated), any data arguments and four initial bytes that identifies the
event as a Tracealyzer formatted user event. This limit can be increased by adjusting MAX ARG SIZE
in tracealyzer.h but beware that your application will then require more stack space.

The VxWorks wvEvent function uses a numerical identifier for all events. Tracealyzer does not use this
identifier formatted user events, so tzEvent uses a constant for this purpose (WWEVENT _ID) which by
defaultis set to 0. WWEVENT ID is defined in tracealyzer.h in case you wish to change this value, e.g.
to avoid collision with existing custom events.

Why Choose Tracealyzer?

Tracealyzer for VxWorks uses the same data source as System Viewer but provides a more powerful
visualization featuring over 30 views, interconnected in clever ways.

Smart trace visualization: The trace view (figure 1) gives a visual timeline of all recorded events, with
many options for filtering and visualization. By default, the timeline has a vertical orientation, which
makes it natural to show events (e.g. VxWorks API calls) in clear text, as event labels. The event labels
can also be filtered in several different ways to focus the view on the most relevant events.

The timeline can be rendered vertically as in this example, or horizontally; in both cases it works
exactly the same.

The trace view is composed of view fields of several types for showing different kinds of information
(task scheduling, event labels, intervals, state machines etc.) Fields can be added, collapsed and
expanded, rearranged and closed individually, to enable the user to always focus on the most relevant
information at any time. You can even have multiple fields of the same type (e.g. scheduling) with
different settings and filters.

File . Find View Layout Views Bookmarks Window Help pFeedback

Trace View - Vertical X%

Filter for View Trace View
@ =l | £ © Eregdddidimegsn .
e Combined -
- {
@ e - Fiter Objscts
—meyEendiMsgo-0) I 1
I ‘j |Separate fiter parts with space X
@ : ' msy@sendiMsg@-0) .
a | ors
3 - | msgasenamsge-0 L
= = = 3 B . e D) [=-[W Services
- £ e A e i | ImsgeReceiversyaeD) | ML=
| g __ﬁ__ = Te] 5 B .,:'I: = I “\\ \ magOReceiveMaga-0) (e Event
E : EAEAEAE =1Ea g \I'.'\..- MOt e) 45000 L] Memory
2 S i
®|D|IB|S 52— | megeReceive(Msg@1) returns after 175 s | -0 Mag2
= N [| Semapharz
e — 1(". ~{magOReceiveiMagD-01 & Task
W \ E
| {msg@RecaiveiMsaa-0) @[| TaskLowLevel
—_— o T . 2)
= % 3\ = ; ‘;‘ ; | ?‘: b _‘%_ i =S mag@ReceiveMsgR-0) =-[W Objects
) e e e o (R R . MsgQ
: =lalEE e w2 2 i
M=z |=|c|elalalalals=F= 2 <l MsgQ-0 (1178 uses)
B|Z|E|D|E|8 5|8(5]E 5|2 2] MsgQ-1 (477 usesh
.g-ﬁsgsﬂsﬁsgﬁ-%.:‘:.g"ES‘%53‘%, "..mngSendMng—U -
els| |&|z|E|E(2|g|z 5|8 ; : 50,000 =es)
2|2 A R el el i <l
UsrEvt] = | ‘}'/,,—lmngReceive(Mng'-DJ returns atter 2731 ps |
W e = o " | nd(Msga-1) | &[] Semaphors
\ - [] Task
B e e e P B e TS -~ [msgEReceive(MsaG-1) returns after 93 pis |) & - “a:h
H = =3 = oal el e o | B sl = [Motice Channels
SIS I2 55815158185 8351 17° U > = User Event Channels
il lElEees]ls] S EvenCrame
Actor = g % = e o o ———|msg@Sendibsg@-0) Client (1267 everts)
M = [E.g STETS T8 e 3 =g | megEReceive(MsaG-0) returns after 867 us !
siz|&|g = 31alalals a5
| 1 | FS s S ls LR TS
BB IR R GRS \ 52000
e |2 |B|2|x G|s =8 2|7
: SinWave (212 events)

Figure 1: Event labels in main trace view

Understand Runtime Dependencies: Dependencies between system calls, tasks and other kernel
objects are understood and highlighted by Tracealyzer. For instance, when selecting a “return from
blocking” event (green label) the corresponding “blocking” event (red label) can be found using the
“Go to Entry event” option, as shown below.

Selection Details - vkKernel: ClientTask1 - o

| Previous | | Clone | | Mext

o Ewert Field

- yxKemel: Client Task 1

- Instance: 2/318

- Triggered by: vxKemel: ServerTask
- Triggers: None

[+- Execution Time: 18 (p=)

[+- Responze Time: 18 (ps)

[+ Fragmentation: 1

- CPU Usage: 1.57%

- Priority: 20

[=]- Extended Information

- Handle: Ge(400413088

- Handle: Ge400413088

(- Used Object
[=-msgdReceive(MsgQ-1) at 47.417 {ms.ps)
- Blocked at 47.242 ms.ys)

... Retumed Success after 175 (=)

s B A

Go to Entry event

2
[ixle]

B

46500

o
|
y=alel

e
=

47.000

ol e
O-LMI
LM
1Ml
LM

q;-s;'._; SRRRRSRARg

DIEYSE (auiancn
438 20aUNJAS LA

[T

o () |

47,200

|lm giaReceiveMsga-1) blocks]

e mEgE SN -1
./

Nmsg@Receive(Mng-1) returns after 175 ps I

oLl

47 400

o-L
Z-LR

£LR

=

2 e
20 1aias
[[RRE=THN =]
5 JaUAEy
NI,
5] JaudEy
AE Jauday

Figure 2: Find related events

Moreover, the Communication Flow graph shown in Figure 3 provides a dependency graph of the task
interactions via VxWorks services. This is generated from the trace data and can be regarded as a
summary of the recorded VxWorks API calls. This is a very useful high-level view of your system’s
runtime architecture. Double-clicking an object in the graph shows a list of the corresponding events
in the Object History view.

() Percepic Tracealyaes - Window 1 - C:\Pragram Files\Percepioh Tracesbyaes 4\¥iWorksdem sewosksianr

Fie Find View Loyt Views Bookmarks Window

Fielp

IE6E 0O

Il

INSEEHENEIE D

ommurication Flow %

@ @ Qioombres View

B e

i Euert
47202 [] ket CieetTask O mogISend
41269 [wkerral CletT 0682 O S et
47287 [l et CientT ask3 O magliSend.
47.325 [wokemrel DT sk () migldSend.
47.325 [l koerrnt ServeTash O migfQFiecern
4143 W ket o
a0t [okemet
7760 [okret
47552 [l okimrnt ServmTask @ meglFiacerm
20822 [akemmat CiantFack O magSend

0622 [l kerret ServeT ask @ migdFceve
0753 [l ket SovverT ok, @ mogdFicee
51625 [et Ced a2 O migSens

51,625 [l whemet ServesTas. © migifieceme.

Figure 3: Trace, Communication Flow and Object History views

Block b

7

oo [Toatwe 47200

St
Sertpoet 81 ! s, [l oot CtTas
Sertpest 22 2 Eope mpifin
Serpeat 83 3 S ot
Saripcal 81 4

3

B \

! |]
re—— o
[— 0 ko Focabing Evark
Sort ot 85 1
C— 0
Ty lareceve 0
ot o 86 1

0

Envcution Trne, 477 o)
& Pasgoras T 1101 fran)
8

3 Ui et
agOReceneiMagl-0t 2 47 740 ma)

Retumed Succes

[T —

e Otects
aserte s wlh x
w0 Ao
41T Ctiocn

& B e m

Integrated data plotting: Tracealyzer allows you to log any application data or event as User Events,
shown in the trace view as yellow labels. Any data arguments can be plotted in the User Event Signal
Plot view, as shown in figure 4, and clicking on a data point will cause Tracealyzer to highlight the
corresponding event in the trace view. That way one can correlate the data with task scheduling,
interrupts, system calls, and other events.

() Percepio Traceslyzes - Window | - C:APragram Files\Percepiot Trscepbyser 4\¥oWarksdem_ewesksmnr
Fle Find View Loyout

Vews Bookmiels Window Help

B Ui e Sigrai Pt - AN C.. %
(ORI UETETE -

INSYENCSNEZEDN I EEH 0 OF

EEEEENECNOEDEEEODEE

Figure 4: User Event Signal Plot

Gk
" e " - e
wfu a” ‘s o 'n"h % .
] 'a 5
ﬁ L} Fd on L w| I Sean
g a i o = ¥ Testal ol o
"R a r o n " o Tt of g = HULL
a L] B " 0 L) S o UETes
3 " " | L u .
n L x » a L] .
5 -] y L ["
H - 4 LW " J @ L] " [
X 0 o [. " "
@ !] ‘ o L] a ¥
k! q 5 [[} ' .
o L a “ . a i
L o e a 1 o
yt " a) "
. N L ¥ n am
L' [} L] L} " ol
~ n]) L) o' a
3 L _-' L g L B . K
10 et g bl o
Nosus —
000 4o S000
i E e e |
= o Ve 8 Everes [omc View Find
l e T (et | [| [] [v |

Pt View | Use Evert Sl Pt
User Evert Charrein
e s

Integrated memory usage view: Tracealyzer provides a graph showing dynamic memory allocation over
time, i.e., malloc() and free() calls, as illustrated in figure 5 below. This allows you to spot memory
leaks and excessive memory usage. Underneath the graph you can see a more detailed memory
allocation view, where addresses are shown and malloc() calls can be matched with their

corresponding free() calls to isolate all remaining allocations, which makes it easier to pinpoint
memory leaks. Since both memory views are connected to the trace view, you can easily find and
analyze the context of any issues found.

(B Percepio Tracealyzer - Window | - CProgram Files\Parcepio\ Traceshyzer £\ voWorks dema _vewoeks.anr
Fle Find View Loyot Views Bookmals Window Help

< [Esine: View| perbusp

i . e izt
@ @ G e
1 eom
® i
@ A
E 125000
- i it
— il 126) e (4AO0OC 60 m 323 03¢
E rea O3B o 308 | S0 omd Succast
| ren(mricn0a5FTs) reeased 104 tites =00w
T
| e y s o
E -firee DA C0OE SEAD) reazed 250 bytes)
[}
{resC0gEEE T refpased 416 bvies 200000 00000 0m
] e |
@ \ OrADDOE BN reimacad 56 vtes | @omc View FiterTasks Fiver Calls
|] [— eton Shew A Block te Ak T Counge *[] Tmetanp. 003
E] ——— 100700 Wkt g Pt AL DesEsOD pEre e Actor. [akemet tichT
= 269261 Wokiomet tii Show Remaining Only DaeEED +ezm854 T Treck e
a1
-:2] \ s Wokomet v ¥ e st oo o [oy
= | 32383t W oo @ maloe Dne0eFFH ey 8
@ = 32383¢ [l vokomel pcom_egrd O hee Des0ERER 1z a0
= 32263¢ [l ket poom sgd Oee n000EAEAD 1528022 280 R
w = 32357 lokorel bcom_esd Oleen DWOEEEFE 1T s [e
= 323606 W okmral pcom epd O maloe Des0BETI60 T 12 Bolo &oc g Evanl
] = 2207 et geom st ke ncesece it =
323550 [biemel wiohTesk Ciee] 1526608 w©
g = 843 [kt Sl T k. b DT 15788 @
= 322815 [l el UckTack O hes ps——" rre o
" . N —— — A —
= 323005 [l obmmt UstTask Ohe De8000ET2SR REL 040
een = 298227 [l okt) i DB Taases i
= 527.223 [l wiormet (RO maloc e D0EAD00 1560600 1514
= 512522 [ll vhiomet twibTas. O maioc w8001 CFC20 1561008 06y E E

Figure 5: Memory Heap Utilization

For further information, contact support@percepio.com. We are happy to offer an online
demonstration and help you get started using your own tools and software. The percepio.com web
site has a lot of material about getting the most out of Tracealyzer, for both beginners and more
experienced users.

mailto:support@percepio.com
https://percepio.com/gettingstarted/
https://percepio.com/

	Tracealyzer for VxWorks – Overview and Getting Started Guide
	Installing Tracealyzer for VxWorks
	Using Tracealyzer with VxWorks
	Custom Trace Configuration
	Tracing Application Code with User Events
	Why Choose Tracealyzer?

