
www.iotonlineconference.com

Using Visual Trace
Diagnostics to Uncover
Hidden Issues

Johan Kraft

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

AGENDA

1 Introduction - Runtime Monitoring

2 Visual Trace Diagnostics, Examples

3 Hands-on Demo

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

THE SPEAKER
CEO, CTO and founder, Percepio AB

Focus: embedded software tracing and
visualization for simplified development

Original developer of Percepio’s first product for visual
trace diagnostics, Tracealyzer, and the founder of the
company. Background in applied academic research in
collaboration with industry, focused on embedded
software timing analysis, and embedded software
development at ABB Robotics. PhD in computer science.

Dr. Johan Kraft

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

SOURCE CODE IS NOT THE FULL PICTURE

?
The runtime behavior also depend on dynamic effects

Such as variations in software timing and interference between tasks

Not visible in the source code, only in runtime!

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

RUNTIME MONITORING

The runtime behavior also depend on dynamic effects

Variations in timing, interference between tasks…

Not visible in the source code, only in runtime!

Instruction Trace Software Event Trace Application Logging

Producer Processor core Software Software

Abstraction Level Low Medium High

Overhead None Minor Depends on method

Special HW needed Yes No No

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

RUNTIME MONITORING

The runtime behavior also depend on dynamic effects

Variations in timing, interference between tasks…

Not visible in the source code, only in runtime!

Instruction Trace Software Event Trace Application Logging

Producer Processor core Software Software

Abstraction Level Low Medium High

Overhead None Minor Depends on method

Special HW needed Yes No No

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

VISUAL TRACE DIAGNOSTICS

Data processed into a meaningful model
connecting related events and objects

Visualization allowing for drill-down
from overviews to details

Data collection

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

VISUAL TRACE DIAGNOSTICS

Use cases:
• Debugging at System Level
• Finding Software Design Flaws
• Verifying Timing and Performance

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

USE CASE 1: DEBUGGING AT SYSTEM LEVEL

When you need a timeline of your software at runtime

Especially important when
• The location of the bug is not obvious
• The issue is difficult to reproduce
• Not possible to use interactive (halting) debug

Superior to classic “printf debugging”
• Very low intrusiveness, typically 100x faster than printf logging
• More information, e.g., kernel, resource usage, …
• Easy and powerful visual analysis, that scales to large data sets

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

EXAMPLE 1: SYSTEM-LEVEL DEBUGGING

The system is writing data to a shared resource, in this case a UART serial port.
Error detected in full-system testing: Occasional data corruption
Two types of data written, “LLL…” and “HHH…”
Sometimes they are mixed up and corrupt the data stream

Embedded Software Application

? ?

Shared Resource (UART)

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

EXAMPLE 1: RECORD A TRACE

We see that two different tasks are writing to the UART.
Are they interfering? How do we find the error?

(Vertical timeline, with RTOS tasks on the left)

RTOS tasks and API calls are recorded automatically. Extra logging added in the UART driver.

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

EXAMPLE 1: USE TOP-DOWN ANALYSIS
Visual overview of task response times (10 s) Trace view at selected location (15 ms)

Each data point is one full execution of a task (a job).
The Y axis shows e.g. task response time.

Double-click to navigate the Trace view here.

Red task preempts yellow task while writing data!

Spot issues in visual overviews, drill down to see the details…

Conclusion: Access conflict due to undesired task preemption, caused by missing synchronization between tasks.

Solution: Add mutex calls for mutual exclusion, or move the writes to a single task.

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

USE CASE 2: FINDING SOFTWARE DESIGN FLAWS

• RTOS software design can be quite challenging
• Important to follow Best Practices

• Software design flaws – Deviations from Best Practices
• Reducing performance and responsiveness (e.g. busy waiting)
• System testing less effective, higher risk of missed bugs

• Examples:
• Unsuitable task priorities
• Large timing variations, perhaps even in high priority tasks
• Lots of task dependencies (e.g. mutex synchronization)

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

EXAMPLE 2: SOFTWARE DESIGN FLAWS

MCU Wi-FiSPI

When evaluating an IoT demo from an MCU vendor,
two issues where noticed immediately in the views...

Issue 2. Wi-Fi driver (yellow) is using
100% of the CPU time for several seconds

Issue 1: 472 bytes takes 20 ms…
Meaning only 23 KB/s over Wi-Fi?

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

EXAMPLE 2.1: SLOW WI-FI
We added logging in the Wi-Fi driver…

Conclusion 1: DMA is used for every SPI message, even for small
handshaking messages of 2-4 bytes. Very inefficient, as the DMA
transfers take 1-2 ms to initiate…

Solution: Don’t using DMA for small amounts of data…

MCU Wi-FiSPI

DMA is used for transferring 4 bytes?

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

EXAMPLE 2.2: HIGH CPU LOAD
The trace view shows that WiFi driver task doesn’t
suspend while waiting for the SPI transfer to finish.

Conclusion 2: Most likely a “busy waiting” loop here.
Bad practice when using an RTOS, since preventing
other tasks from executing. Probably unintentional.

A likely culprit was quickly found in the driver code:

Solution: Ensure the RTOS task is suspended while waiting, e.g. by enabling the NON_BLOCKING_TX option.

MCU Wi-FiSPI

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

USE CASE 3: VERIFYING TIMING AND PERFORMANCE

Keep Track of Software Timing and Resource Usage Metrics
Software Timing

• Per Task – Execution time, response time, periodicity, …
• Custom Intervals – Time between user-defined events

Resource Usage
• CPU usage (percentage per task)
• Memory usage (malloc/free, stack usage per task)
• I/O usage (e.g. bytes per second)

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

HANDS-ON DEMO

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

OVERHEAD?

For Percepio TraceRecorder library, used for e.g. FreeRTOS:

RAM usage: Typically 5-10 KB for trace buffer (configurable)

Flash usage: 10-20 KB needed for trace recorder library

CPU usage:
• Microseconds per event
• Depends on application (event rate, amount of logging)
• Some penalty, but typically not noticeable (a few percent)

© I o T O n l i n e C o n f e r e n c e . c o m A l l r i g h t s r e s e r v e d IoTOnlineConference.com

SUMMARY

Visual Trace Diagnostics - Top-Down Workflow from Overviews to Details
• System Level Debugging
• Finding Software Design Flaws
• Verifying Timing and Performance

Tracing performed by a software library
• Kernel activity (scheduling, API calls)
• Add user events for additional information
• No special hardware needed

About 100x faster than printf logging, so the overhead is typically not a problem

w w w . i o t o n l i n e c o n f e r e n c e . c o m

THANK YOU

w w w . i o t o n l i n e c o n f e r e n c e . c o m

