Using Visual Trace
JoT Diagnostics to Uncover
Hidden Issues

Conference

(J) percepio’

Johan Kraft

] AGENDA

a Introduction - Runtime Monitoring

e Visual Trace Diagnostics, Examples

e Hands-on Demo

© loTOnlineConference.com All rights reserved loTOnlineConference.com

] THE SPEAKER
Dr. Johan Kraft

&) CEO, CTO and founder, Percepio AB

Focus: embedded software tracing and
visualization for simplified development

Original developer of Percepio’s first product for visual
trace diagnostics, Tracealyzer, and the founder of the
company. Background in applied academic research in
collaboration with industry, focused on embedded
software timing analysis, and embedded software
development at ABB Robotics. PhD in computer science.

© loTOnlineConference.com All rights reserved lIoTONlineConference.com

I SOURCE CODE IS NOT THE FULL PICTURE

4

The runtime behavior also depend on dynamic effects
Such as variations in software timing and interference between tasks

Not visible in the source code, only in runtimel!

© loTOnlineConference.com All rights reserved loTOnlineConference.com

RUNTIME MONITORING

Lwue
184140
184141
184141
184142
184142
184143
184144
184144
184145
184145
184146
184147
184147
184148
184148
184149
184149

184150
124181

100a8

100ac

100b0
100£c

10100

10104

100b4

100b8

100bc
1nn&

i0Lv

000100fc -> write r3l
IncrementCounterByl add

0000002e -> write 0
IncrementCounterByl+0x04

0000002e -> write x0
IncrementCounterByl+0x08
nain+0x30 sth

exth

i_s
%r0,[%rl]

2e -> write mem [0x011000]

nain+0x34 1db

%r0,[%r2]

5a <- read mem [0x011001] -> writ

0000005a -> write x0
nain+0x38 bl _s
00010106 -> write r31
IncrementCounterBy2 add
0000005¢c -> write r0
IncrementCounterBy2+0x04
0000005¢c -> write rO
IncrementCounterBy2+0x08

maindivia arh

IncrementC
%x0,
exth
j_s

ZvN F2vy21

P LUMNLEAL SWLLUL UM LFU U LU LUMLIUL
9.330] xQueueReceive (CtrlDataQueue, 100) retu
0.253] 08 Ticks: 8103

1.253] 08 Ticks: 8110

1.270] Context switch on CPU 0 to Pos_ADC_ISR
1l.z281] xQueueSendFronISR({Ctr1lDataueue)
1.2%0] Context switch on CPU 0 to Control
1.868] xQueuefend (Mot orQueue)

1.878] Actor Ready: Motor

1.889] Context switch on CPU 0 to Motor
1.%00] xQuenePeceive (MotorQueue, 1l0) returns
1.934]) xQueueReceive (MotorQueue, 10} blocks
1.954] Context switch on CPU 0 to Control
1.965] xQueuelReceive (CtrlCundQueue, 0) timeout
1.977] xQueueReceive (CtrlDataQueues, 100)
1.990] xQueueReceive (CtrlCundfueune, 0) timeout

wc] Starting key provisioning...

wc] Write root certificate...

wc] Write device private key...

Svc] Write device certificate...

Svc] Key provisioning done...

Svc] Starting WiFi...

Ir Svc] WiFi module initialized.

IS-MAIN] WiFi connected to AP AndroidAP.

WS-MAIN] Attempt to Get IP.

WS-MAIN] IP Address acquired 192.168.0.51

WS-LED] [Shadow ©] MQTT: Creation of dedicated MQI
WS-LED] Sending command to MQTT task.

IQTT] Received message 10000 from queue.

IQTT] Looked up a7sw@r7rvpirn.iot.us-east-1.amazon:
MQTT] MQTT Connect was accepted. Connection estab!
MQTT] Notifying task.

AWS-LED] Command sent to MQTT task passed.

Instruction Trace

Software Event Trace

Application Logging

Producer Processor core Software Software
Abstraction Level Low Medium High

Overhead None Minor Depends on method
Special HW needed Yes No No

© loTOnlineConference.com All rights reserved

loTONlineConference.com

RUNTIME MONITORING

Lwue i0Lv I
184140 000100fc -> write r3l |
184141 100a8 IncrementCounterByl add 5x0,]
184141 0000002e -> write 0 1
184142 100ac IncrementCounterByl+0x04 extb

184142 0000002e -> write 0 !
184143 100b0 IncrementCounterByl+0x08 Jj_s 1
184144 100fc nain+0x30 sth %5r0,[%rl] |
184144 2e -> write mem [0x011000] 1
184145 10100 main+0x34 1ldb %r0,[%r2] 1
184145 S5a <- read mem [0x011001] -> wutl
184146 0000005a -> write 0

184147 10104 mnaint0x38 bl_s Incremenccl
184147 00010106 -> write r3l

184148 100b4 IncrementCounterBy2 add 5x0,]
184148 0000005¢c -> write r0

184149 100b8 IncrementCounterBy2+0x04 extb

184149 0000005¢c -> write rO

184150 100bc IncrementCounterBy2+0x08 j_s

1R4a1 1 1nNin& maindivia arh ZvN F2vy21

P LUMNLEAL SWLLUL UM LFU U LU LUMLIUL
9.330] xQueueReceive (CtrlDataQueue, 100) retu
0.253] 08 Ticks: 8103

1.253] 08 Ticks: 8110

1.270] Context switch on CPU 0 to Pos_ADC_ISR
1l.z281] xQueueSendFronISR({Ctr1lDataueue)

1.2%0] Context switch on CPU 0 to Control
1.868] xQueuefend (Mot orQueue)

1.878] Actor Ready: Motor

1.889] Context switch on CPU 0 to Motor
1.%00] xQuenePeceive (MotorQueue, 1l0) returns
1.934]) xQueueReceive (MotorQueue, 10} blocks
1.954] Context switch on CPU 0 to Control
1.965] xQueuelReceive (CtrlCundQueue, 0) timeout
1.977] xQueueReceive (CtrlDataQueues, 100)
1.990] xQueueReceive (CtrlCundfueune, 0) timeout

wc] Starting key provisioning...

wc] Write root certificate...

wc] Write device private key...

Svc] Write device certificate...

Svc] Key provisioning done...

Svc] Starting WiFi...

Ir Svc] WiFi module initialized.

IS-MAIN] WiFi connected to AP AndroidAP.

WS-MAIN] Attempt to Get IP.

WS-MAIN] IP Address acquired 192.168.0.51

WS-LED] [Shadow ©] MQTT: Creation of dedicated MQI
WS-LED] Sending command to MQTT task.

IQTT] Received message 10000 from queue.

IQTT] Looked up a7sw@r7rvpirn.iot.us-east-1.amazon:
MQTT] MQTT Connect was accepted. Connection estab!
MQTT] Notifying task.

AWS-LED] Command sent to MQTT task passed.

Instruction Trace

Software Event Trace

Application Logging

Producer Processor core Software Software
Abstraction Level Low Medium High

Overhead None Minor Depends on method
Special HW needed Yes No No

loTONlineConference.com

© loTOnlineConference.com All rights reserved

l VISUAL TRACE DIAGNOSTICS

o =] o =] o =] =] =] mHMI
n n
18.370.000 (s.ms.ps) 18,380,000 18.390.000
[Control
View \
| | WPoc_ADCISR LD atalueue

| , Visual Trace « 1

Visualization allowing for drill-down Diagnostics

from overviews to details

Data processed into a meaningful model
connecting related events and objects

'\\\ Software Tracing /

//
\\ v.//
- - Timestamp Actor Event Text
I 1.308 Cortrol xQueueReceiwve(CtrlDataQueue, 100) blocks

1.3z8 HMI Context switch on CPU 0 to HMI

Data COl | ection 1.333 HMI vTaskDelayUntil (500}
1.349 TzCtrl Context switch on CPU 0 to TzCtrl
1.426 TzCtrl Umased Stack for TzCtrl: 81
1.433 TzCtrl vTaskDelay(20)
1.448 IDLE Context switch on CPU 0 to IDLE

© loTOnlineConference.com All rights reserved loTOnlineConference.com

l VISUAL TRACE DIAGNOSTICS

‘ Use cases:

* Debugging at System Level

* Finding Software Design Flaws

* Verifying Timing and Performance

‘a‘ Visual Trace
| Diagnostics

_ Software Tracing
\\\. 4

loTONlineConference.com

© loTOnlineConference.com All rights reserved

l USE CASE 1: DEBUGGING AT SYSTEM LEVEL

When you need a timeline of your software at runtime
h '; ‘ ,Ix@ueueSendFromlSR(CtrIDataQueue)]
. . "‘,"“ leueueSend(MotorQueue) |
E S p eC I a | |y I m p O rta nt W h e n :‘."iv‘ /..lxQueueReceive(MotorQueue,10) returns after 7964 ps]
* The location of the bug is not obvious Y —
* The issue is difficult to reproduce oSt |
| xGueveReceive(Motoraueue, 10) bocks |
* Not possible to use interactive (halting) debug

|xQueueRecsive(CtrICmdQueue, 0) timeout/fail |

(dnpels)
10z

[y TaskDelayUrti(38300) |

\ '—«{xQueueReceive(CtrIDataQueue,100) I
|I= ol |xQueueReceive(CtriCmdQueue, 0) timeoutifail |
Superior to classic “printf debugging” H | omcsheciDatums, 10 tocks |
* Very low intrusiveness, typically 100x faster than printf logging
* More information, e.g., kernel, resource usage, ...

* Easy and powerful visual analysis, that scales to large data sets

© loTOnlineConference.com All rights reserved loTOnlineConference.com

] EXAMPLE 1: SYSTEM-LEVEL DEBUGGING

[LLL Embedded Soft roolicat
LL mbeaded >oftware Application
HHHHHHHHHHHHHHHHHHH

LL
LL
LL

?

HHHHHHAHHHHHHHAHAHH

LL
LL
LLLLLLLLLLLLHHAHHHHHHHAHHHHHHHHH Shared Resource (UART)
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

The system is writing data to a shared resource, in this case a UART serial port.
Error detected in full-system testing: Occasional data corruption
Two types of data written, “LLL...” and “HHH...”

Sometimes they are mixed up and corrupt the data stream

© loTOnlineConference.com All rights reserved lIoTONlineConference.com

I EXAMPLE 1: RECORD A TRACE

RTOS tasks and API calls are recorded automatically. Extra logging added in the UART driver.

{ 194.863 S Vi
. v ync iew
if (buffer == NULL) Q @‘ @ o "
s LU L cvent rield
{ ' -
return °;
} | Actor Ready: TaskLow |
J 3.320.000
vIracePrint (UART EVENTS, buffer);: =1 ¥|H R L [
for (; size !'= 0; --size) «|yTaskDelayUrti(3624) |
{
if (ptr_put(stdio_base, *buffer++) < 0)
: ;T' ,j 3.340.000
We see that two different tasks are writing to the UART. £17|8|& :
. . . — = = [Actor Ready: TaskHigh I
Are they interfering? How do we find the error?
Shae gt Bt S ' [UART] HHHHHHHHHHHHHHHHHHHH
LL — =~
LL \ : 3.360.000
LL ~—{vTaskDelaylnti(4155) |
HHHHHHHHHHHHHHHHHEH
LL (Vertical timeline, with RTOS tasks on the left)
LL ’
LLLLLLLLLLLLHHHHHHHHHHHHHHHHAAAH
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

© loTOnlineConference.com All rights reserved lIoTONlineConference.com

] EXAMPLE 1: USE TOP-DOWN ANALYSIS

Spot issues in visual overviews, drill down to see the details...

Visual overview of task response times (10 s) Trace view at selected location (15 ms)
® @ 1000000 - [§]Sync View Response Time - @ Q 15000 - [§Sync View
£.500 ms.ps =[Slartup] U CPUD EventF -
TaCul ,
£.000 ms.ps o) O Taskbow [] ol oy e
\ I TaskHigh ~JIUART] LLLLLLLLLCLLLLCLLLCLL LU LLLLLLLLLLLLL
5500 ms.pis |
5.000 ms.ps 1
2 | o - «l[UART] HHHHHHHHHHHHHHHHHHHH] 8.156.000
4.500 ms.ps glgs!
[m N O s O s O I s I O O s O I s O R s s s £~ . o
4000 ms.us - Red task preempts yellow task while writing data!
2500 Each data point is one full execution of a task (a job).
.500 ms.ps 5 3 -
The Y axis shows e.g. task response time. — [TaskDskayLti(35S) |
M Double-click to navigate the Trace view here. S
2.500 ms.ps
2.000 ms.ps
]]]]] L]] -] -] -] -]
1.500 ms.ps LL
1,000 ms s LL
% E § LL
500 ps g = % HHHHHHHHHHHHHHHHHHHA
Ous I vTaskDelayUrtil(3456) LL
5.000.000 (s.ms.ps) 10.000.000 LL
\ 4 LLLLLLLLLLLLHHHHHHHHHHHHHHHHHHHHA

LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL

Conclusion: Access conflict due to undesired task preemption, caused by missing synchronization between tasks.

Solution: Add mutex calls for mutual exclusion, or move the writes to a single task.

© loTOnlineConference.com All rights reserved lIoTONlineConference.com

I USE CASE 2: FINDING SOFTWARE DESIGN FLAWS

e RTOS software design can be quite challenging o

* Important to follow Best Practices

e Software design flaws — Deviations from Best Practices e o s

* Reducing performance and responsiveness (e.g. busy waiting)
e System testing less effective, higher risk of missed bugs

* Examples:

e Unsuitable task priorities
e Large timing variations, perhaps even in high priority tasks
* Lots of task dependencies (e.g. mutex synchronization)

© loTOnlineConference.com All rights reserved loTOnlineConference.com

] EXAMPLE 2: SOFTWARE DESIGN FLAWS

1 e EEEEE When evaluating an loT demo from an MCU vendor,
a _|SOCKETS_Send(Socket 0x20011410) sert 472 bytes
s ' two issues where noticed immediately in the views...
) —~ [[Writer] hytesTransferredNow 472]
|\~ Witer] bytesTransferredTotal 472 |
- -~4Mfriter]Wﬁte instance 1, page: 1 I MCU SPl WI_FI
BRE Issue 1: 472 bytes takes 20 ms...
1B Meaning only 23 KB/s over Wi-Fi? ——
CPU Load Graphs X
@ Q 2,379730 ~ [@)Sync View Resolution CPUO -~
F I 100% W Tror Sv
g
= 40.000 80% . | . | I M isR 3:
©<| |ssue 2. Wi-Fi driver (yellow) is using B sh s
z _|SOCKETS _Send(Socket 0x20011410) set 480 bytes | B0 % | B ISR usi
[— =+ 100% of the CPU time for several seconds
| |Mwiter] bytesTransferredhlow 480 0%
0%
~|pwiter] bytesTransferredTotal 480 | fgj I
{Miiter] Wite instance 1, page: 2 | =5 1,000.000 2,000.000

© loTOnlineConference.com All rights reserved loTOnlineConference.com

I EXAMPLE 2.1: SLOW WI-Fi

We added logging in the Wi-Fi driver...

W)
086% L
CEETE

b QL0

_—|xsemaphoreGiveFromiSR(0x20014408) |
| |xSemaphoreTake(0x200144D8, 4294967235) |
— — static A _STATUS WIFIDRVS_SPI_DMA Transfer(spi_transfer_t *transfer)
ﬂ—l[wm_spll After WIFIDRYS_SPI_DMA_Transfer, 0 bytes remaining | { - - - = - -
10.000
| [wifi_spi] WIFIDRYS_SPI_InOutToken (4 byte) |

4

assert(NULL != transfer);

Lish :1:(1:»-:

| [wifi_spi] WIFIDRYS_SPI_Transfer (4 byte) | vTracePrintF(uec, "WIFIDRVS SPI_DMA Transfer (%d byte)", transfer->dataSize);

|25 5 2| - iwifi_sp] WFIDRVS_SPI_DMa_Transfer (4 byte) |
215128 . . 5
ff;oi D] % & /—IxSemaphoreGiveFromISR(Ux20014;\08) I \ DMA IS Used for tra nSfeI’rIng 4 byteS !
|| &
~_|xSemaphoreTake(0x20014AD8, 4294967295) | ~_ — -
\—l[wifi_spi] After WIFIDRYS_SPI_DMA_Transfer, 0 bytes remaining I] [Wlfl_Spl] WFIDRVS_SPI_DMA_TI’anSfer (4 b')’te)
R 12.000
E:JZ'.}IE ?» - —{[wifi_spi] WIFIDRYS_SPI_InOutToken (2 byte) l -

Conclusion 1: DMA is used for every SPI message, even for small
handshaking messages of 2-4 bytes. Very inefficient, as the DMA MCU
transfers take 1-2 ms to initiate...

SPI

Wi-Fi

Solution: Don’t using DMA for small amounts of data...

© loTOnlineConference.com All rights reserved loTOnlineConference.com

I EXAMPLE 2.2: HIGH CPU LOAD

The trace view shqus that WiFi driver task do-es'n t HEED e
susgend while walting for the SPI transfer to finish. 1 ~_|xSemaphoreTake(0x200144D8, 4294957235) |
I ‘*»—I[wifi_spi] After WIFIDRVS_SPI_DMA,_Transfer, 0 bytes remaining] -
. , « e 5 g S lwifi_spil WIFIDRYS_SPIInOutToken (4 byte) | oo
Conclusion 2: Most likely a “busy waiting” loop here. o Il = | | i sl FDRVS 5P Transier ey |
Bad practice when using an RTOS, since preventing S5 EE | lwifispl WIFDRVS_SPI_DMA_Transfer (4 byte) |
other tasks from executing. Probably unintentional. 3E é 2 [rsemsphoreonerromsR 20014208 |
K ~_|xSemaphoreTake(Dx200144D8, 4294967295) |
I B B —»—[[wifi_spi] After WIFIDRVS_SPI_DMA,_Transfer, O bytes remaining]
- - - - ‘ 2 ':;31 A E 31 | [wifi_spi] WIFIDRYS_SPI_InOutToken (2 byte) | e
A likely culprit was quickly found in the driver code: chEE e
#if INON_BLOCKING_TX
/*Wait till packet is sent to target®/ SPl L.
?¥ ((block_result = BLOCK(pCxt, ath_sock_context[index], TRANSMIT_BLOCK_TIMEOUT, TX_DIRECTION)) != A 0K) MCU W|-F|
result = block_result;

Solution: Ensure the RTOS task is suspended while waiting, e.g. by enabling the NON_BLOCKING_TX option.

© loTOnlineConference.com All rights reserved loTOnlineConference.com

I USE CASE 3: VERIFYING TIMING AND PERFORMANCE

Keep Track of Software Timing and Resource Usage Metrics [0 g -
Software Timing o i
* Per Task — Execution time, response time, periodicity, ... Ny

* Custom Intervals — Time between user-defined events 0 E
AL

Resource Usage 0 -
e CPU usage (percentage per task) E E

* Memory usage (malloc/free, stack usage per task) i —:

* |/O usage (e.g. bytes per second) TmC

© loTOnlineConference.com All rights reserved loTOnlineConference.com

] HANDS-ON DEMO

© loTOnlineConference.com All rights reserved loTOnlineConference.com

] OVERHEAD?

For Percepio TraceRecorder library, used for e.g. FreeRTOS:
RAM usage: Typically 5-10 KB for trace buffer (configurable)
Flash usage: 10-20 KB needed for trace recorder library

CPU usage:

* Microseconds per event

* Depends on application (event rate, amount of logging)

* Some penalty, but typically not noticeable (a few percent)

lIoTOnNlineConference.com

] SUMMARY

Visual Trace Diagnostics - Top-Down Workflow from Overviews to Details
e System Level Debugging

* Finding Software Design Flaws

* Verifying Timing and Performance

Tracing performed by a software library

» Kernel activity (scheduling, API calls)

* Add user events for additional information
* No special hardware needed

About 100x faster than printf logging, so the overhead is typically not a problem

© loTOnlineConference.com All rights reserved lIoTONlineConference.com

lIoT

THANK YOU Oriine

Conference

WWwWWwW.iotonlineconference.com

IoT
Online

Conference

WWwWWwW.iotonlineconference.com

