
Trace Visualization for Efficient Debugging of Embedded Systems

Percepio AB



Source code is not the full picture

?
Emergent behaviors arise when modules are integrated into systems. 

Runtime effects, not visible in the source code...

Correctness
• Timeouts?
• Deadlocks?
• Enough hardware resources?
• …

Performance, e.g.,
• Responsiveness?
• Throughput?
• Efficient use of hardware resources?
• …

What is really going on in runtime?

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

2



Source code is not the full picture

?

Correctness
• Timeouts?
• Deadlocks?
• Enough hardware resources?
• …

Performance, e.g.,
• Responsiveness?
• Throughput?
• Efficient use of hardware resources?
• …

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

3

Emergent behaviors arise when modules are integrated into systems. 
Runtime effects, not visible in the source code...

What is really going on in runtime?



We need to Monitor in Runtime

Instruction Trace Event Trace Application Logging
Producer Processor core Software (API or Kernel) Software (application)
Abstraction Level Low Medium High
Overhead None Some More
System Requirements High Low Low
Flexibility Low High High

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

4



Making Traces Useful

• Raw traces are difficult to make sense of
• Vast amounts of boring, repeating patterns
• It’s usually the anomalies that are interesting

• Could we use a powerful neural network to find them?

• Yes, we already have this - the Human Brain!
• Extremely good at pattern recognition
• But only for data in visual form…

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

5



Trace Visualization

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

6



Trace Visualization

What is desired on high level?
- Abstract the data into meaningful overviews.

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

7



Trace Visualization

What is desired on high level?
- Abstract the data into meaningful overviews.

- Connect related views, allow drill-down.

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

8



Trace Visualization

What is desired on high level?
- Abstract the data into meaningful overviews.

- Connect related views, allow drill-down.

- Reveal dependencies between events.

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

9



Trace Visualization

What is desired on high level?
- Abstract the data into meaningful overviews.

- Connect related views, allow drill-down.

- Reveal dependencies between events.

Requires specialized visualization that actually 
understands the meaning of the trace data. 

This way, far better understanding is possible.

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

10



Trace Visualization
What can be studied? Some examples:
- Multi-threading and timing

- Context switches, internal kernel events
- Execution time, response time, periodicity…

- API calls (OS, Middleware stacks, Drivers…)
- Call sequences and timing
- Parameters and return values
- Blocking and timeouts
- Object dependencies

- Application logging
- Debug messages, variable values…

- Time between important events
- State changes over time

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

11



Benefits of Trace Visualization

Validation
System working as intended?

Debugging
Find the cause of issues

Optimization
Get more performance

Documentation
Visualize designs or issues

Training
Explain how an OS or API works

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

12



Methods for Event Tracing – Snapshot Trace

• Last events kept in RAM buffer

• Typically a ring buffer

• Save a snapshot when desired

• When halted on a breakpoint

• Automatically on runtime errors

• Can be very memory efficient, 
allowing for use on MCUs.

• Percepio’s snapshot trace format 
uses only 4-8 byte per event

• 5-10 KB trace buffer often 
sufficient

Using Trace Visualization for Efficient Debugging of Embedded 

Systems, Johan Kraft, Percepio AB
13

Snapshot Trace

RAM ring buffer



Snapshot Trace in Deployed Systems
• Example: ABB Robotics

• Snapshot tracing active at all times, 
also during customer operation.

• In case of errors, a trace is submitted 
to the developers for analysis.

• Benefits
• Learn about every serious error directly, 

the very first time it occurs.
• Get detailed information that pinpoints 

the problem, reducing the need for site 
visits and lab guesswork.

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

14

“ABB Robotics is using the first generation Tracealyzer in all
of the IRC5 robot controllers shipped since 2005. The tool has
proven its value many times in all corners of the world.”

Roger Kulläng, Global System Architect, ABB Robotics



Snapshot Tracing on IoT Devices
• Perfect for IoT systems, 

where secure connectivity is 
already in place. 
• In case of errors, upload a 

trace for analysis.
• Compact and valuable 

information 
• This is just 5 KB of trace data
• 350 ms trace, during a busy 

period, with many details.

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

15



Event Tracing Method 2: Streaming Trace
• Continuous transfer

• Allows unlimited trace length
• We have tested up to 70 hours

• Can use any interface with 
decent throughput
• Debug/trace ports, TCP/IP, 

USB or even UARTs.

• Can be combined with live 
visualization!

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

16

Embedded
Application

Kernel

Streaming Trace
Recorder

Target Processor

Tracealyzer

Host PC

trace1.
psf

Network



Example: Live Streaming

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

17



Customer Case 1 – Random Timing Variations

18



Periodic task should execute every 5 ms…

Y-axis shows time between activations. There are random variations between 4-7 ms

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

19



When looking closer at these locations...

ControlTask seems to disable interrupts, thereby disabling the RTOS scheduler!

No OS Ticks for 2.5 ms

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

20



Don’t disable interrupts, use a Mutex instead!

Now perfect 5 ms periodicity!

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

21



Customer Case 2 – The Watchdog Reset

22



Sometimes a Watchdog Reset occurs, why?

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

23

A user event was added just before kicking the 
watchdog, shows the ”margin” (timer value)

Watchdog timer expires, since not kicked in time



Why doesn’t SamplerTask kick the Watchdog?

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

24

Clue
Supposed to kick the watchdog, but is 
blocked on a message queue send.



Why is ControlQueue blocking?

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

25

Clue
The queue seems to only
allow 5 messages, so blocks 
because it gets full!



So ControlQueue gets full... Why?

Clue 1

ControlTask (green) gets less CPU time. This

since ServerTask (yellow) uses more CPU 

time and has higher scheduling priority.

Using Trace Visualization for Efficient Debugging of Embedded 

Systems, Johan Kraft, Percepio AB
26

Symptom

Watchdog ”margin” decreases…

Clue 2

Messages are buffered in ControlQueue for 

longer time (send -> receive).

Conclusion

ControlTask can’t keep up reading the messages

due to ServerTask’s higher priority.



Swapped Task Priorities – Problem Solved!

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

27



Summary – Customer Case 2

Using Trace Visualization for Efficient Debugging of Embedded 
Systems, Johan Kraft, Percepio AB

28



Thank you! Questions?

29


