WVHITE PAPER

Stop Guessing

See Inside RTOS Firmware with Visual Tracing

The debugging of RTOS-based systems can be dramatically simplified—
reducing debugging time from days or weeks to hours—with better
insight into their real-time execution. This requires RTOS-level software
tracing, where good visualization is key to make sense of the data.

B =i = {{Ctent] Started |
fjzient

{Clent] Clert ©: 2 |
iChent] Senving recuest: 000001 |
’!cmﬁnﬂk}m re_spmse on rem‘\‘.ieﬁ 3popon |

— D -
I, {iChent) Sencng repiest aocoonn | [

= TR e

[megaRecevaiMegn.0)

sbve(Mag-1) refurna afler 175 e |

percepio

Stop Guessing

See Inside RTOS Firmware With Visual Tracing

Dr. Johan Kraft, CEO and founder, Percepio AB

A real-time operating system (RTOS) is a fast, deterministic operating system that is typically
small enough to be suitable for use in microcontrollers (MCUs), making RTOSes ideal for
use in embedded and loT applications. Developers are moving towards RTOSes because
they can help reduce code complexity, guarantee hard timing deadlines, and facilitate reuse
of software modules. The structure imposed by using an RTOS increases the application’s
maintainability and makes adding features easier. This is all good for management because
it can increase development efficiency, decrease time to market, and improve product
reliability and customer satisfaction.

However, all these advantages do not come without complexities. Subtle coding choices
can result in elusive errors or performance issues in the final product, that are not apparent
in the source code. The system seems to operate as intended in the lab, but there can be
countless execution scenarios that are impossible to fully cover by testing or code reviews.
In the worst case, the system passes testing but crashes during customer use. To ensure
reliable operation, all parts of the application code need to follow best practices in RTOS-
based design. This requires good insight into the system’s real-time behavior.

Trace visualization can be thought of as a slow-motion video
of the application’s internals.

When such problems occur, debugging can be a nightmare since the circumstances that
caused the problem are often not known in detail and thereby difficult to reproduce.
Developers often find themselves guessing their way through this, trying one thing after
another to get the application to run properly. But to be sure the problem is solved,
developers need to understand the specific sequence of software events that caused
the problem, including the interactions between the application and RTOS. Traditional
debugging tools can't offer this capability.

RTOS trace visualization, which can be thought of as a slow-motion video of the
application’s internals, is a good way to be confident that an RTOS software runs as
designed—and is the fastest way to detect and correct bugs.

Challenges in RTOS-based design

The main job of an RTOS is to provide multitasking, which allows for separation of software
functionality into multiple “parallel” programs, known as tasks. An RTOS creates the illusion
of parallel execution by rapidly switching the execution between the tasks. Unlike general-
purpose operating systems, an RTOS gives the developer full control over the multitasking
and therefore enables deterministic real-time behavior.

An RTOS takes control over program execution and brings a new level of abstraction in

the form of these tasks. When using an RTOS, the control-flow of the program is no longer
apparent from the source code, since the RTOS decides which task to execute at any given
moment. This is a fundamental change, similar to the shift from assembly to C programming,
as it allows for higher productivity using higher abstraction, but also means less control over
the fine details.

While an RTOS can reduce the complexity of the application source code, it
does not reduce the inherent complexity of the application itself.

This double-edged sword can make it easier to design complex applications, but these
applications may subsequently turn out to be difficult to validate and debug. While an RTOS
can reduce the complexity of the application source code, it does not reduce the inherent
complexity of the application itself. A set of seemingly simple RTOS tasks can result in
surprisingly complex runtime behavior when executing together as a system.

The developer needs to determine how the tasks are to interact and share data using the
RTOS services. Moreover, the developer needs to decide important RTOS parameters such
as task priorities (relative urgency) that can be far from obvious. Even if all your code is
written according to best practices in RTOS-based design, there might be other parts of the
system—in-house or third-party components—that run in the same RTOS environment but
that may not follow the same principles.

The fundamental problem that makes RTOS-based design difficult is that RTOS
tasks are not isolated entities but have dependencies that may delay or stall the
task execution in unexpected ways. This may reduce performance, make the system
unresponsive or unstable, or even cause intermittent data loss.

There is at least one kind of dependency between the tasks: they share the processor
time. Higher-priority tasks can wake up and take over the execution at almost any point,
until all active higher-priority tasks have completed. Moreover, tasks often use shared
software resources (e.g., global data and peripheral interface drivers) that require blocking
synchronization calls to prevent access conflicts. Such task dependencies may depend on
many factors, including variations in input values, input timing, and task execution times.

Such issues are not visible in the code and often not detectable in unit tests, but show up
in the integrated product, either during full system testing or in customer use. This makes
them difficult to reproduce for debugging, unless the developer knows the exact sequence
of software events that led up to the problem.

Finding Bugs in RTOS-based Systems

When the embedded industry moved from assembly to C programming, debugging tools
quickly followed with source-level debugging, which made the C code perspective the
normal debugging view. Unfortunately, the tools generally haven't evolved beyond this
level. Some of them have been enhanced with features that allow developers to inspect

the state of RTOS objects such as tasks and semaphores, but that is not enough. An RTOS
debugging tool must understand the concept of time, be able to correlate events, and allow
developers to observe the real-time behavior of an application.

This calls for RTOS tracing, which means that software events are recorded in runtime, in the
RTOS kernel and optionally also in the application code, intended for host-side analysis.

—3-

Good visualization is key to understanding RTOS traces. Many embedded systems exhibit

a cyclic behavior, which means that a trace mostly consists of repetitions of the “normal”
pattern. The interesting part is usually the anomalies, but they can be very difficult to spot in
a raw data stream. A graphical presentation makes any anomalies stand out.

An RTOS debugging tool must understand the concept of time, be able to
correlate events, and allow developers to observe the real-time behavior
of an application.

Moreover, a debugging tool that understands RTOS events and data structures can extract
much more information from a trace than just the basic execution flow. For instance, it is
possible to construct a dependency graph showing the interaction between tasks, interrupt
service routines, and RTOS objects such as semaphores and message queues.

Seeing Is Understanding

The primary job for a software tracing tool is to capture events in the target system, from
scheduling and RTOS calls to timer ticks and application-specific log messages. But a quick
look at a typical event log (below) makes it clear although this might be useful, textual
presentation does not scale to the large amounts of data resulting from software tracing.
This example only represents about 2 milliseconds of execution. An RTOS trace spanning
over a few minutes can contain millions of events.

Timestamp RActoxr Ewvent Text

:01.Ee3_E2& Corntrol Context switch on CPUT 0 to Control

01, 883 _E37 Cortcrol HxueuePeceive (Cocrllataluens, 100) returns after 1270 ps
01, 5e2_ 3210 Corntraol xlhacuePeceive (CtrlCmdlfasus, 0O) timeowut ffail

t01. 569 _ 327 Contral xaeuePeceive (Corllataluens, 100) blocks

t01. 563347 IDLE Context switch on CPU 0 to IDLE

tO1_E70_E31 IDLE 0% Ticks: &lE5&9

tO1_E71_E31 IDLE 0% Ticks: &1570

tO1.871_E39 IDLE Actor Peady: Motor

t01.871.z2587 Pos_ADC ISR Context switch on CPU O Lo Pos_ ADC ISR

t01.E571.ze8 Dos_ADC ISR xeuefendFronISR(Corilatathisus)

to1. 571 =277 Pos_ADC TSR Actor Ready: Control

t01.571._z86 IDLE Context switch on CPU 0 to IDLE

t01.571._&96 Motor Context switch on CPU 0 to Motor

:01.5871.317 Mot or xaeuePeceive (MotorQueas, 10) timeout after 294EZF ps=
SOl E71_=Z8 Motor [Motor PUHM] O

01,571, 345 Motor xhaeueleceive (HotorQueus, 100 blocks

t01.571. 266 Cortrol Context switch on CPU 0 to Control

t01.571.376 Contral xeuePReceive (CorlDataluens, 100) returns aftcer Z049 ps=s
t01.571.389 Control xfaeuePeceive (CtrlCmdfaeus, 0) timeout Sfail
:01.571.407 Corm-rol xaeuePeceive (CtrlDatafuens, 100) blocks
t01.E871_4z7 IDLE Context switch on CPUT 0 to IDLE

H H R KRHKRERRRRRRBRRERRBRRRRRRRR R

An event log can be informative but it does not scale to large amounts of trace data.

Finding a bug in a large text log is like looking for a needle in a haystack, without knowing
what the needle looks like. To get to the next level—to understand what is intended
behavior and what is not—the developer needs suitable tools for data visualization.

Finding a bug in a large text log is like looking for a needle in a haystack,
without knowing what the needle looks like.

A better way to present large amounts of RTOS trace data is to use a graphical Gantt-style
trace view, which allows for displaying the trace data on an interactive timeline. This allows
the developer to zoom out and overview a vast amount of trace data, identify abnormal
patterns, and zoom in to see the details. A graphical trace view may include not only the
RTOS task execution but may also include API calls, application log messages, and other
events, as shown in the example on the next page.

| [Chert] Started

[CEent] Client iC: 0

i/
I;"J__..[ECIarl]Wﬂlng for ¢ on request 1000001 |

[|iciert] Started

| e]

-1

E-LM

i

0L

T
TR
-iBEN

£-obsy

|GG A
{1}

i

T woo |auEa
PHSELIISIT (|BUIEA
YSELIBAIES [BLUSHXA
AEBLIOSUSS ([BUISHHA

LHSELRRD
F=8L3=a1an

g
)

/
|':(tmmlm request; 2000001 |
— / .mem@mrﬁmsmmgazmw |

AN

]

magGReceiveihsaa-0)

M msgoReceive(Msga-1) retums after 175 s
' |[CHent] Response received OK, value: 1001001 (4 bytes) |
| " ms@Receive(hsan-2) returns after 2682 s |

§,

| [[ciert) Response recaivedl OK, value: 2001001 (4 bytes) |

| [[Cient] Response received Ok, valus: 3001001 (4 bytes) |

The trace view in Percepio Tracealyzer, showing a vertical timeline of the trace data.

01N
1N

LN

el

JRLLEMHA

095007 JAUEpA

HEBLGOR] LA
DIESUST JBUEMA

FHSELIISET JRLENA
s eay JaULEY A |
ZHTEL ISR RIS
|SLILSE JaLaA
y=8| dahiEs
YERLIDSUSS, JRUIBYXA

FLNEY AT TR
HER11E1a0

HERLIEISUN AT FALLDMXA

One common issue for embedded system developers is that target systems tend to be
constrained in terms of both CPU power and memory. That is why a diagram like this CPU
load graph (below) can be helpful: it displays the amount of processor time used by each
task and interrupt service routine. Armed with this information, a developer can quickly see
any hot spots where the load approaches 100 percent over longer periods (where tasks are
likely to be delayed) as well as the amount of remaining CPU time available for adding more
features without upgrading the hardware.

40% M (startup)

W TCul

[HMI

[Contral

W Hatar

[Fos £DC_ISR

0

P

1:20.000.000 [rm:s.ms. pg)

A CPU load graph from Percepio Tracealyzer shows processor usage per task over
time, clearly showing where a specific task is consuming much higher CPU resources
than others.

—5—

To connect back to the debugging aspect of tracing, a runaway task in an application that
consumes more CPU than intended will be clearly visible in a CPU load graph. Tasks using
inefficient “busy waiting” will also stand out. This wastes CPU time that otherwise would be
available to other tasks and is a common violation of best practices in RTOS-based design.

By tracing API calls, you actually capture dependencies between tasks that a tool can
visualize in a dependency graph, like the one below. Such a visual summary of the
application design provides confidence that the application code works as intended and can
also reveal bugs related to incorrect or missing API calls, i.e., issues that may cause stability

problems.

Sem-4
W W kemel: tShelln

O3

B [xkemel twdbTask

Sem-1
Semaphare

B emnel: tiokTask

Sem-0
Semaphore
Sem-3
Semaphore

This communication flow or dependency graph is a good starting point for many
debugging sessions as it shows a bird’s-eye view of the application architecture, and
then allows the developer to drill down to any object in the graph by double-clicking it.

B <ermel: ipcom_egd

[wkermel: ipcom_tickd

A good tracing tool should also allow the developer to log custom application-specific
data in the trace stream. These events can be used for almost anything, but one common
usage is to log important variable values and state transitions from the application code.

[user Event Signal Pict - All Channels
@ G 58 - [[Sme View
100 - Ciid
¥g! nr AW availCs
Wl RS £ e ;s
a] ¥ & e y %Y B
o 4 4 - .9] 5
o oh " I %] # o L uﬁ u‘é
o & »] t a] ah -] 7
{[Siriimes] Vae: -G8 W0] i a J o o - o 1 a ¥ " t
f . ' '
1|2 Jl+*Y 4 4§ opt & | ¢ 73
= il 1 . L o i a j' N * o + Lo q
J/.:gu_?:l_hmwi Ielechs » # o ? 4 * L i - i s o *
S e o I o
MaEr-) petiere aer A6 i *L a bl o 1 a it -] 8 L ' .
= 1 5] | B b { o 1
a1 returme atfer 150 & r] " n | . T
. . o] | l a L
! a 20 i a o B * § L
~—igahR bl =i L/ 8 | i) L. Ik : " T . J a '*
-~AnChr e d) flxts| a0 1 b : o ' L) » hr ol " 8
] 1 "3 o # -] " . @ » 8
s T T t a® I L] agd a 1 ja7) o '!
ot d it | o L ! il 1 T : : I nn 1
= i ‘ : s ko ! :
.. &0 l‘ g LT] N Wg 9
_____ ki 8l = LA % s ©
o) | ovars
)\ Ofpz] 00000 200,000 200,000 400,000 500 000 EOLOCO

Percepio Tracealyzer supports application data logging and plotting over time.

Example: Priority Inversion on Mars

A highly visible and expensive example of RTOS debugging challenges was illustrated
during NASA's Pathfinder mission that landed a rover on Mars in 1997. During the mission,
the spacecraft experienced total system resets causing lost data. After much trouble, NASA
found the cause to be a classic RTOS problem known as priority inversion.

Priority inversion may occur when a high-priority task (red Task H in the illustration below)
tries to access a shared resource such as a communications interface, currently in use by

a lower priority task (green Task L). Normally, Task H would become blocked for a brief
duration until Task L returns the shared resource. A priority inversion occurs if a medium-
priority task (yellow Task M) happens to pre-empt Task L at this point, delaying the high-
priority task as illustrated below. In the NASA Pathfinder case, this caused repeated timeout
errors leading to system resets, data loss and nearly a mission failure.

- 4| xoemaphoreTake!=em1) I

= -%xﬂemaphnreTake[Semﬂt:ulu:u:ks I

Task L B

Tazk H

,.--|xSemaphnreGive(Sem1j |

/
X —-"{:
_‘-H-—|xSemaphnreTake(Sem1) returns after 902 ps I

Taszk M

Tazk L

",
‘*-—leemaphnreGive(SemU I

W HEEL
H 3L

A priority inversion as shown in Percepio Tracealyzer.

Tracing allows developers to detect and prevent these types of issues. Tracing entails
recording software behavior during runtime, allowing for later analysis of collected

trace data. Tracing is most often a development bench activity, but tracing can also be
enabled for production use, continuously active to record behaviors and catch errors
post-deployment. Production tracing can be an effective technique for detecting rarely
manifested errors that are difficult to reproduce in a debugger. These can include situations
where the system responds more slowly than expected, gives incorrect or suboptimal
output, freezes up, or crashes.

Hardware vs. Software Tracing

Tracing can be performed either in hardware (in the processor) or in software. Hardware-
based tracing generates a detailed instruction-level execution history, while software-based
tracing focuses on selected software events, typically in the operating system and important
application-level interfaces. Hardware-generated trace provides details regarding control-
flow and does not impact the execution of the traced system, but it does require special
equipment and a trace-enabled hardware platform.

Software-generated trace does not require any special hardware and can even be deployed
in shipped products similar to a black-box flight recorder used in aviation. Moreover,
software trace allows for storing any application data at these events, including local
variables and function parameters, while hardware trace is often limited to only the control-
flow and possibly global data accesses, assuming a high-speed trace port. Software tracing
does induce some CPU overhead, but this is typically not noticeable (a few percent).

—7-

Software tracing relies on
target-system RAM for
temporary buffering of the
trace data, but the RAM buffers
are usually configurable to
allow for balancing RAM usage
vs. buffer sizes.

Tracing is especially important
for systems that integrate a
real-time operating system. A
central feature of RTOSes is
multitasking—the ability to run
multiple programs (tasks) on a
single processor core by rapidly
switching among execution
contexts. Multitasking,
however, makes software
behavior more complex, and
affords the developer less
control over run-time behavior

as execution is pre-empted by
the RTOS.

Stop Guessing

Hardware Trace

Software Trace

® Generated by CPU features
® Exact instruction sequence
® Non-intrusive
e Often only control-flow trace
e General data trace requires
special chips and boards due
to high data rates
e For lab use only
e Examples:
e Lauterbach TRACE32®
e iSystem Bluebox

® Generated by software
e Higher abstraction level
e RTOS task execution
e APl calls
e Application-specific logging
e Uses target CPU and RAM
e Any software event and data
e Advanced analysis possible
® No extra hardware needed
e For lab use
e As crash recorder in field use
e Examples:
e Wind River System Viewer
e Percepio Tracealyzer

“The many system views of Tracealyzer from
Percepio make it easy to quickly find solutions
that we have not seen using System Viewer. The
visualization has several advantages over the
System Viewer and makes it easier to understand

system behavior.”

— Johan Fredriksson, Software Architect, SAAB AB

The debugging of RTOS-based systems can be dramatically simplified—reducing
debugging time from days or weeks to hours—with better insight into their real-time
execution. This requires RTOS-level software tracing, where good visualization is key

to make sense of the data. While several tools can provide basic RTOS tracing, more
sophisticated visualization makes it far easier to understand the trace, spot important issues,

and verify the solutions.

Percepio Tracealyzer is the best tool for software tracing, enabling sharper
insight, higher quality, and faster development. It is available for leading RTOSes
and Linux systems and supports most 32-bit and 64-bit processors out-of-the-
box. The Tracealyzer application runs on Windows and Linux hosts.

A free, fully functional evaluation of Tracealyzer can be downloaded from
https://percepio.com/. The installer includes a pre-recorded demo trace so
you can quickly start exploring all 30+ interconnected views.

About Percepio

Percepio January 2021

Percepio is the developer of a highly visual runtime diagnostics tool for embedded and Linux-
based software, Tracealyzer, and of the award-winning DevAlert, a cloud-based service for error
reporting in deployed loT devices with Tracealyzer diagnostics. Percepio collaborates with several
leading vendors of operating systems for embedded software and is a member of the Amazon
Web Services Partner Network (Advanced Technology Partner).

