
Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB
Dr. Johan Kraft, CEO/CTO/founder, Percepio AB

johan.kraft@percepio.com

Common RTOS-related bugs
How avoid and detect

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Real-Time Operating Systems

• A base software platform for your firmware

• Provides multithreading

– Tasks – Separate threads of execution

– Supporting services - Semaphores, Queues, Timers, etc.

• An RTOS is fast, compact and deterministic

– Common also on (32-bit) MCUs

• Many exists, some more common

– FreeRTOS, µC/OS, ThreadX, VxWorks…

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

RTOS multi-tasking

while(1){

if (condition1){

Func1();

}

if (condition2){

Func2();

}

if (condition3){

LowPowerMode();

}else{

Sleep(10)

}

}

”Superloop” design
/* Task 1 */

while(1){

DelayUntil(Time + 10);

Func1();

}

/* Task 2 */

while(1){

WaitForEvent(B);

Func2();

}

RTOS system

/* Idle task */

while(1){

LowPowerMode();

}

Each task has:

• Separate execution context (stack and registers)

• Fixed scheduling priority (relative urgency)

• Scheduling status (ready/waiting)

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Runtime view: RTOS multi-tasking

(Example from Percepio Tracealyzer)

Most RTOS use fixed priority, pre-emptive scheduling:

• Always selects task with highest priority, that is ready to execute

• May use ”round-robin” (alternate between tasks) if same priority

• The RTOS can pre-empt a running task at any point, to let a higher priority task start.

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Signaling a task using a semaphore

/* Task A */

...

xSemaphoreGive(SemB);

...

/* Task B */

while(1){

/* Waits here, until signaled */

xSemaphoreTake(SemB, FOREVER);

DoMyThing();

}

Semaphore ”SemB”

/* ISR X */

...

xSemaphoreGiveFromISR(SemB);

...

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Runtime view: semaphore

(Example from Percepio Tracealyzer)

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Passing data using message queues

/* Task A */

...

msg.cmd = CMD1;

msg.param1 = x;

msg.param2 = y;

xQueueSend(qB);

...

/* Task B */

while(1){

/* Waits until message or timeout */

sts = xQueueReceive(qB, &msg, 10);

if (sts == TIMEOUT){

HandleTimeout();

}else switch(msg.cmd){

case CMD1: HandleEvent1(); break;

case CMD2: HandleEvent2(); break;

}

}

Message queue ”qB”

/* ISR X */

...

msg.cmd = CMD2;

msg.param1 = a;

xQueueSendFromISR(qB);

...

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Runtime view: message queues

(Example from Percepio Tracealyzer)

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Sharing resources using a mutex

/* Task A */

xSemaphoreTake(Mutex1);

global->x = a;

global->y = b;

xSemaphoreGive(Mutex1);

/* Task C */

xSemaphoreTake(Mutex1);

global->x = p1;

global->y = p2;

xSemaphoreGive(Mutex1);

Semaphore ”Mutex1”

/* Task B */

xSemaphoreTake(Mutex1);

global->x = x1;

global->y = y1

xSemaphoreGive(Mutex1);

Mutex – a Semaphore for mutual exclusion

(try to avoid, but sometimes necessary!)

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Sharing resources using a dedicated task

/* Task A */

...

msg.cmd = SEND;

msg.data = x;

msg.len = sizeof(x);

xQueueSend(TX_Queue);

...

/* Task TX_Task */

while(1){

/* Waits until message or timeout */

sts = xQueueReceive(TX_Queue, &msg, FOREVER);

...

switch(msg.cmd){

case SEND: tx_write(msg.data, msg.len);

break;

...

}

}

”TX_Queue”

/* Task B */

...

msg.cmd = SEND;

msg.data = y;

msg.len = sizeof(y);

xQueueSend(TX_Queue);

...

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

RTOS Benefits:

Easier to design complex applications

• Easier to handle multiple interfaces (TCP/IP, USB, HMI…)
– One task for each purpose…

• Easier to pass data between ISRs and application

– Safely! (home-cooked solutions may not be)

– Reduce ISR processing time – let a task do the work

• Easier to maintain and extend

– Tasks allow for modular design

– Easy to add new tasks, independent of period or trigger

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

RTOS Benefits: More efficient design

• Avoid wasting cycles on inefficient polling

– Tasks sleep individually, wakes up on the right RTOS event.

• Save energy using Low Power Modes

– Use the Idle Task to enter LPM, using e.g. “wfi” instruction.
– Tickless Idle – disable the RTOS tick interrupt.

• More responsive system – shorter interrupt latency

– Minimize ISR time by delegating jobs from ISRs to tasks.

– Activate the task from the ISR, using a semaphore

• Task starts immediately, thanks to pre-emptive scheduling

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

RTOS Overhead

• Code (ROM)

– Typically 5-10 KB

• Data (RAM)

– 200-300 bytes for common kernel data

– ~128 byte per task stack + ~50 bytes for task control block

• Processor time

– Task-switches take 100-200 clock cycles (a few thousand times/sec)

– Periodic OS tick – very small impact in itself

• Interrupt latency

– May increase due to critical sections in RTOS kernel

– Time-critical ISRs can be allowed to pre-empt the RTOS kernel, if they
don’t use any RTOS services.

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

RTOS Challenges - Learning curve

• An RTOS introduces a new abstraction level – tasks

– You are no longer in direct control over the code execution!

• You need to design how the tasks interact and share data

– When to use a semaphore, mutex, message queue, etc.

• You need to decide suitable task priorities

– Relative urgency – not always obvious

• You need to understand

– The general principles

– Best practices and common pitfalls

– The API and configuration of your RTOS

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

RTOS Challanges - Test & Debug

• The system behavior is not apparent from the source code

– Timing and RTOS scheduling is not visible!

• Task-switches are often asynchronous to the program flow

– Strikes at different locations, depending on “random” variations in input
timing and execution times

– There can be a enormous number of possible execution scenarios, with

different timing and execution order

• Why do I need to worry about this?

– Bugs may depend on timing, very difficult to find and reproduce!

– Risk for “nightmare bugs” that only appear under special conditions
– Most debug tools provide little support for multi-tasking issues

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Symptoms of RTOS-related bugs

• Tasks works fine in isolation but not as a full system

• Slow performance

• System locks up, or sometimes stops responding

• System appears brittle – minor changes results in weird errors

• Random variations in output timing

• Sometimes corrupted data, or wrong output

• Random crashes/hard-faults

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Problem: Stack overflow

• Symptom: Strange behavior, hard faults (crashes)

• Problem: Each task has a separate stack, if not large enough

the stack may accidentally overwrite other data…

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

How avoid stack overflow

• Check the “high watermark” of the stack usage for each task
after extensive testing, make sure there is some safety margin

• Make sure to enable stack overflow detection in your RTOS

• Some IDEs can calculate the worst case stack usage

• Don’t use recursion! :-)

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Problem: Task starvation (slow response)

• Symptom: One or several tasks

runs slow, or not at all

• Problem: Higher priority tasks

use too much processor time,

not enough remaining for the

lower priority tasks.

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

How avoid task starvation

• Avoid polling/busy wait and make sure to put tasks to sleep

after completion (delay, wait for semaphore…), so other tasks
of lower priority can execute.

• Use higher priorities only for tasks with predictable execution

pattern and shorter execution times

• Tasks triggered by external events and/or longer execution

times should have lower priorities

• Divide longer jobs into multiple task, with appropriate priority

• Rate monotonic schedulability analysis?

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Problem: Task jitter

• Symptom: Disturbances in the timing of periodic tasks

• Problem: The execution of a task is sometimes delayed, by

higher priority tasks or by ISRs.

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

How avoid task jitter

• Make sure to use preemptive scheduling

• RTOS tick rate should be a lot higher than the shortest task period

• Don’t disable interrupts to protect critical sections
– Disables the RTOS!

– Use mutexes, or let a dedicated task manage the resource.

• If disturbance is from higher priority tasks

– Change priorities?

– Add an offset to the execution, so they don’t overlap?
– Reduce their execution time?

• If disturbance is from ISRs

– Reduce their execution time, e.g., delegating processing to tasks.

– Put time-critical code in high-priority ISR, driven by periodic timer.

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Problem: Priority Inversion

• Symptom: High priority task

is delayed by lower priority

tasks

• Problem: Mutex held by

lower priority task, gets

preempted and delayed by

mid priority task.

• Can also occur with queues

and other blocking objects

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

How avoid priority Inversion

• Avoid sharing resources between tasks (e.g., using mutexes)

– Have a dedicated task that manage each resource

• If sharing is required, use Mutexes with “Priority Inheritance”
– If a high-priority task H is waiting for a resource, held by a lower-priority

task L, the RTOS temporarily raises the priority of task L to avoid pre-

emption by irrelevant middle-priority tasks.

• Generally, use a single blocking point per task (to get input)

– Avoid mutexes…
– Avoid other blocking, e.g., when writing to a full message queues

• Set timeout 0, check return value and handle any error

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Problem: Deadlock

• Symptom: Multiple tasks

suddenly stop to execute

• Problem: Circular wait on

blocking kernel calls

• “Solved” by timeout here,
but this can hide the

problem!

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

How avoid deadlock

• Avoid critical sections…
• Especially avoid multiple nested critical sections, using two or

several mutexes at the same time!

• But if required, make sure that:

– All tasks locks and unlocks the mutexes in the same order, and

– The unlocking should be inverted to the locking order.

Task 1

Lock MutexA

Lock MutexB

…
Unlock MutexB

Unlock MutexA

Task 2

Lock MutexA

Lock MutexB

…
Unlock MutexB

Unlock MutexA

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

How detect RTOS bugs

• Diagnostic features in your IDE

– Stack calculation features

– RTOS-aware debugger (inspect object states)

• Diagnostic features in your RTOS

– Return value from API calls

– CPU usage statistics (per task)

– Stack diagnostics – high watermark and overflow detection

• But to see a timeline, you need tracing!

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

RTOS-aware tracing

Software-defined Tracing
Trace recorder library – stores RTOS

events like task switches and API calls.

Also allows for application logging

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

RTOS Trace Visualization

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Tracealyzer - Main View

Task scheduling

Preemptions

Interrupts

RTOS API calls

Blocking

Resumes

Timeouts

RTOS Tick

User Events

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB
Kernel Object History: shows all events on a specific kernel object

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB
Communication Flow: dependencies through kernel objects

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB
CPU Load Graph: Use of processor cycles, per task and ISR

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB
User Event Signal Plot: Based on ”User Event” data

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Example 1: Detecting and analyzing Task Jitter

Task should execute every 5 ms, but random variations of 1-2 ms!

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Compare with the Task Trace...

Something delays the activation of SamplerTask, probably ControlTask!

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Why delayed activation?

ControlTask seems to disable interrupts!

No OS Ticks for 2.5 ms

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

When using a Mutex instead of disabling interrupts...

Now perfect 5 ms periodicity!

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Example 2: Priority Inversion

Occurred in NASA’s
Pathfinder mission

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

SamplerTask blocked, stops kicking the Watchdog

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Blocked on Send means full queue... ControlTask is not

reading the queue fast enough?

ServerTask has higher

priority than ControlTask,

does not leave enough

cycles when high load!

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

With swapped task priorities – problem solved!

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Getting the Data

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Snapshot trace

Works for any processor and debugger, can be deployed in field.

Gives a short trace only, limited by RAM buffer size.

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Streaming trace

Unlimited trace duration, small runtime footprint

Several interfaces can be used (USB, UART, TCP/IP, debug probe…)

Common RTOS-related bugs – how avoid and detect

Johan Kraft, Percepio AB

Questions?

