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Real-Time Operating Systems

• A base software platform for your firmware

• Provides multithreading

– Tasks – Separate threads of execution

– Supporting services - Semaphores, Queues, Timers, etc.

• An RTOS is fast, compact and deterministic

– Common also on (32-bit) MCUs

• Many exists, some more common

– FreeRTOS, µC/OS, ThreadX, VxWorks…
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RTOS multi-tasking

while(1){

if (condition1){

Func1();

}

if (condition2){

Func2();

}

if (condition3){

LowPowerMode();

}else{

Sleep(10)

}

}

”Superloop” design
/* Task 1 */

while(1){

DelayUntil(Time + 10);

Func1();

}

/* Task 2 */

while(1){

WaitForEvent(B);

Func2();

}

RTOS system

/* Idle task */

while(1){ 

LowPowerMode();

}

Each task has:

• Separate execution context (stack and registers)

• Fixed scheduling priority (relative urgency)

• Scheduling status (ready/waiting)
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Runtime view: RTOS multi-tasking

(Example from Percepio Tracealyzer)

Most RTOS use fixed priority, pre-emptive scheduling:

• Always selects task with highest priority, that is ready to execute

• May use ”round-robin” (alternate between tasks) if same priority

• The RTOS can pre-empt a running task at any point, to let a higher priority task start.
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Signaling a task using a semaphore

/* Task A */

...

xSemaphoreGive(SemB);

...

/* Task B */

while(1){

/* Waits here, until signaled */

xSemaphoreTake(SemB, FOREVER);

DoMyThing();

}

Semaphore ”SemB”

/* ISR X */

...

xSemaphoreGiveFromISR(SemB);

...
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Runtime view: semaphore

(Example from Percepio Tracealyzer)
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Passing data using message queues

/* Task A */

...

msg.cmd = CMD1;

msg.param1 = x;

msg.param2 = y;

xQueueSend(qB);

...

/* Task B */

while(1){

/* Waits until message or timeout */

sts = xQueueReceive(qB, &msg, 10);

if (sts == TIMEOUT){

HandleTimeout();

}else switch(msg.cmd){

case CMD1: HandleEvent1(); break;

case CMD2: HandleEvent2(); break;

}

}

Message queue ”qB”

/* ISR X */

...

msg.cmd = CMD2;

msg.param1 = a;

xQueueSendFromISR(qB);

...
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Runtime view: message queues

(Example from Percepio Tracealyzer)
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Sharing resources using a mutex

/* Task A */

xSemaphoreTake(Mutex1);

global->x = a;

global->y = b;

xSemaphoreGive(Mutex1);

/* Task C */

xSemaphoreTake(Mutex1);

global->x = p1;

global->y = p2;

xSemaphoreGive(Mutex1);

Semaphore ”Mutex1”

/* Task B */

xSemaphoreTake(Mutex1);

global->x = x1;

global->y = y1

xSemaphoreGive(Mutex1);

Mutex – a Semaphore for mutual exclusion

(try to avoid, but sometimes necessary!)
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Sharing resources using a dedicated task

/* Task A */

...

msg.cmd = SEND;

msg.data = x;

msg.len = sizeof(x);

xQueueSend(TX_Queue);

...

/* Task TX_Task */

while(1){

/* Waits until message or timeout */

sts = xQueueReceive(TX_Queue, &msg, FOREVER);

...

switch(msg.cmd){

case SEND: tx_write(msg.data, msg.len);

break;

...

}

}

”TX_Queue”

/* Task B */

...

msg.cmd = SEND;

msg.data = y;

msg.len = sizeof(y);

xQueueSend(TX_Queue);

...
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RTOS Benefits:

Easier to design complex applications

• Easier to handle multiple interfaces (TCP/IP, USB, HMI…)
– One task for each purpose…

• Easier to pass data between ISRs and application

– Safely! (home-cooked solutions may not be)

– Reduce ISR processing time – let a task do the work

• Easier to maintain and extend

– Tasks allow for modular design

– Easy to add new tasks, independent of period or trigger
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RTOS Benefits: More efficient design

• Avoid wasting cycles on inefficient polling

– Tasks sleep individually, wakes up on the right RTOS event. 

• Save energy using Low Power Modes

– Use the Idle Task to enter LPM, using e.g. “wfi” instruction.
– Tickless Idle – disable the RTOS tick interrupt.

• More responsive system – shorter interrupt latency

– Minimize ISR time by delegating jobs from ISRs to tasks.

– Activate the task from the ISR, using a semaphore

• Task starts immediately, thanks to pre-emptive scheduling
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RTOS Overhead

• Code (ROM)

– Typically 5-10 KB

• Data (RAM)

– 200-300 bytes for common kernel data

– ~128 byte per task stack + ~50 bytes for task control block

• Processor time

– Task-switches take 100-200 clock cycles (a few thousand times/sec)

– Periodic OS tick – very small impact in itself

• Interrupt latency 

– May increase due to critical sections in RTOS kernel

– Time-critical ISRs can be allowed to pre-empt the RTOS kernel, if they 
don’t use any RTOS services.
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RTOS Challenges - Learning curve

• An RTOS introduces a new abstraction level – tasks

– You are no longer in direct control over the code execution!

• You need to design how the tasks interact and share data

– When to use a semaphore, mutex, message queue, etc.

• You need to decide suitable task priorities

– Relative urgency – not always obvious

• You need to understand 

– The general principles

– Best practices and common pitfalls

– The API and configuration of your RTOS
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RTOS Challanges - Test & Debug

• The system behavior is not apparent from the source code

– Timing and RTOS scheduling is not visible!

• Task-switches are often asynchronous to the program flow

– Strikes at different locations, depending on “random” variations in input 
timing and execution times

– There can be a enormous number of possible execution scenarios, with 

different timing and execution order

• Why do I need to worry about this?

– Bugs may depend on timing, very difficult to find and reproduce!

– Risk for “nightmare bugs” that only appear under special conditions
– Most debug tools provide little support for multi-tasking issues
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Symptoms of RTOS-related bugs

• Tasks works fine in isolation but not as a full system

• Slow performance

• System locks up, or sometimes stops responding

• System appears brittle – minor changes results in weird errors

• Random variations in output timing

• Sometimes corrupted data, or wrong output

• Random crashes/hard-faults
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Problem: Stack overflow

• Symptom: Strange behavior, hard faults (crashes)

• Problem: Each task has a separate stack, if not large enough 

the stack may accidentally overwrite other data… 
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How avoid stack overflow

• Check the “high watermark” of the stack usage for each task 
after extensive testing, make sure there is some safety margin

• Make sure to enable stack overflow detection in your RTOS

• Some IDEs can calculate the worst case stack usage

• Don’t use recursion! :-)
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Problem: Task starvation (slow response)

• Symptom: One or several tasks 

runs slow, or not at all

• Problem: Higher priority tasks 

use too much processor time, 

not enough remaining for the 

lower priority tasks.
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How avoid task starvation

• Avoid polling/busy wait and make sure to put tasks to sleep 

after completion (delay, wait for semaphore…), so other tasks 
of lower priority can execute.

• Use higher priorities only for tasks with predictable execution 

pattern and shorter execution times

• Tasks triggered by external events and/or longer execution 

times should have lower priorities

• Divide longer jobs into multiple task, with appropriate priority

• Rate monotonic schedulability analysis?
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Problem: Task jitter

• Symptom: Disturbances in the timing of periodic tasks

• Problem: The execution of a task is sometimes delayed, by 

higher priority tasks or by ISRs.
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How avoid task jitter

• Make sure to use preemptive scheduling

• RTOS tick rate should be a lot higher than the shortest task period

• Don’t disable interrupts to protect critical sections
– Disables the RTOS!

– Use mutexes, or let a dedicated task manage the resource.

• If disturbance is from higher priority tasks

– Change priorities?

– Add an offset to the execution, so they don’t overlap?
– Reduce their execution time?

• If disturbance is from ISRs

– Reduce their execution time, e.g., delegating processing to tasks.

– Put time-critical code in high-priority ISR, driven by periodic timer.
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Problem: Priority Inversion

• Symptom: High priority task 

is delayed by lower priority 

tasks

• Problem: Mutex held by 

lower priority task, gets 

preempted and delayed by 

mid priority task.

• Can also occur with queues 

and other blocking objects
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How avoid priority Inversion

• Avoid sharing resources between tasks (e.g., using mutexes)

– Have a dedicated task that manage each resource

• If sharing is required, use Mutexes with “Priority Inheritance”
– If a high-priority task H is waiting for a resource, held by a lower-priority 

task L, the RTOS temporarily raises the priority of task L to avoid pre-

emption by irrelevant middle-priority tasks.

• Generally, use a single blocking point per task (to get input)

– Avoid mutexes…
– Avoid other blocking, e.g., when writing to a full message queues

• Set timeout 0, check return value and handle any error 
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Problem: Deadlock

• Symptom: Multiple tasks 

suddenly stop to execute

• Problem: Circular wait on 

blocking kernel calls

• “Solved” by timeout here, 
but this can hide the 

problem!
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How avoid deadlock

• Avoid critical sections…
• Especially avoid multiple nested critical sections, using two or 

several mutexes at the same time!

• But if required, make sure that:

– All tasks locks and unlocks the mutexes in the same order, and

– The unlocking should be inverted to the locking order.

Task 1

Lock MutexA

Lock MutexB

…
Unlock MutexB

Unlock MutexA

Task 2

Lock MutexA

Lock MutexB

…
Unlock MutexB

Unlock MutexA
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How detect RTOS bugs

• Diagnostic features in your IDE

– Stack calculation features

– RTOS-aware debugger (inspect object states)

• Diagnostic features in your RTOS

– Return value from API calls

– CPU usage statistics (per task)

– Stack diagnostics – high watermark and overflow detection

• But to see a timeline, you need tracing!
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RTOS-aware tracing

Software-defined Tracing
Trace recorder library – stores RTOS

events like task switches and API calls.

Also allows for application logging
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RTOS Trace Visualization
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Tracealyzer - Main View

Task scheduling

Preemptions

Interrupts

RTOS API calls

Blocking

Resumes

Timeouts

RTOS Tick

User Events
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Kernel Object History: shows all events on a specific kernel object
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Communication Flow:  dependencies through kernel objects
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CPU Load Graph: Use of processor cycles, per task and ISR
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User Event Signal Plot: Based on ”User Event” data
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Example 1: Detecting and analyzing Task Jitter

Task should execute every 5 ms, but random variations of 1-2 ms!
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Compare with the Task Trace...

Something delays the activation of SamplerTask, probably ControlTask!
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Why delayed activation?

ControlTask seems to disable interrupts!

No OS Ticks for 2.5 ms
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When using a Mutex instead of disabling interrupts...

Now perfect 5 ms periodicity!
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Example 2: Priority Inversion

Occurred in NASA’s 
Pathfinder mission
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SamplerTask blocked, stops kicking the Watchdog
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Blocked on Send means full queue... ControlTask is not 

reading the queue fast enough?

ServerTask has higher 

priority than ControlTask, 

does not leave enough 

cycles when high load!
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With swapped task priorities – problem solved!
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Getting the Data
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Snapshot trace

Works for any processor and debugger, can be deployed in field.

Gives a short trace only, limited by RAM buffer size.
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Streaming trace

Unlimited trace duration, small runtime footprint

Several interfaces can be used (USB, UART, TCP/IP, debug probe…)
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Questions?


