Common RTOS-related bugs

How avoid and detect

Dr. Johan Kraft, CEO/CTO/founder, Percepio AB percep|n

johan.kraft@percepio.com R A FTET

Real-Time Operating Systems

* A base software platform for your firmware
* Provides multithreading

— Tasks — Separate threads of execution
— Supporting services - Semaphores, Queues, Timers, etc.

An RTOS is fast, compact and deterministic
— Common also on (32-bit) MCUs

¢ I\/Iany EXiStS, some more common
— FreeRTOS, uC/0S, ThreadX, VxWorks...

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

RTOS multi-tasking

”Superloop” design

while (1) {
if (conditionl) {
Funcl () ;
}

if (condition2) {
Func2 () ;
}

if (condition3) {
LowPowerMode () ;
}else/{
Sleep (10)
}

Each task has:

RTOS system

/* Task 1 */

while (1) {
DelayUntil (Time + 10);
Funcl () ;

}

/* Task 2 */

while (1) {
WaitForEvent (B) ;
Func?2 () ;

}

/* Idle task */
while (1) {
LowPowerMode () ;

}

» Separate execution context (stack and registers)
* Fixed scheduling priority (relative urgency)
* Scheduling status (ready/waiting)

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

percepio

SENSING SOFTWARE

Runtime view: RTOS multi-tasking

IDLE 1 | 0 s |
Tmr Sve | |
Superv -

Control
Actuator 1
SensorZ ﬁ

SensorY D |:| D
SensorX |:| |:|

ISR Timer!
ISR Timer2 | | |
ISR Timer3 | | [

520000 530.000 540 000 550 000 560 000 570 000 58000

(Example from Percepio Tracealyzer)

Most RTOS use fixed priority, pre-emptive scheduling:

* Always selects task with highest priority, that is ready to execute

* May use “round-robin” (alternate between tasks) if same priority

 The RTOS can pre-empt a running task at any point, to let a higher priority task start.

Common RTOS-related bugs —how avoid and detect pEFCEp|D
SEN

Johan Kraft, Percepio AB

SENSING SOFTWARE

Signaling a task using a semaphore

/* Task A */

/* ISR X */

xSemaphoreGive (SemB) ; xSemaphoreGiveFromISR (SemB) ;

Semaphore "SemB”

/* Task B */

while (1) {
/* Waits here, until signaled */
xSemaphoreTake (SemB, FOREVER) ;
DoMyThing () ;

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

percepio

SENSING SOFTWARE

Runtime view: semaphore

‘ \ T - {xSemaphoreGiveFromISR[SemaphSerEJ
® ISRTimer3 == Qo o

N~ —| xSemaphoreTake(SemaphSenZ) returns after 14947 ps

[ll SensorZ

ﬂ ----- ———— xSemaphoreTake(SemaphSenZ) biocks

(Example from Percepio Tracealyzer)

Common RTOS-related bugs —how avoid and detect DEFEED'D

Johan Kraft, Percepio AB

SENSING SOFTWARE

Passing data

using message queues

/* Task A */

msg.cmd = CMDI1;
msg.paraml = x;
msg.param2 = y;
xQueueSend (gB) ;

/* ISR X */

msg.cmd = CMD2;
msg.paraml = a;
xQueueSendFromISR (gB) ;

A 4

@ssage gueue “gB”

/* Task B */

while (1) {

/* Waits until message or timeout */

sts = xQueueReceive (gB, é&msg, 10);

if (sts == TIMEOUT) {
HandleTimeout () ;

}else switch (msg.cmd) {
case CMD1l: HandleEventl (); break;
case CMD2: HandleEvent2 (); break;

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

percepio

SENSING SOFTWARE

Runtime view: message queues

smer] | | Acor nformation
®
ISRTimer2 — i Task SensorX
o EtTimars - — | & Instance: 5/90
» Imer I /‘ ,,,,,,,,,,,,,, _l xQueueSend(SensorQueue) I Tnggened by' ISRTimer1
‘ - Triggers: None
St &~ Execution Time: 1.057 (ms.ps)
————— =) == -~ Response Time: 1.093 (ms.pus)
SensorY | l 3 218 B} Fragmentation: 1
W Contre ¢ e ; : CPU Usage: 3.59 %
B Control | o & (® Priority: 8
"""""""""""""""""""""" € eue - Pefforms 4 event(s)
@] SensorQueue (Queue) = O
® |sf File View Filter Tasks Filter Calls
M <ol Timestamp Actor Event Block time Status Size Queue :.I Timestamp:
Se
94728 [SensorZ O xQueueSend Sent post #14 2 @13 W il Actor: |
99.729 [[] SensorY O xQueveSend Sent post £15 3 D13 me 15 Svont
il Status:
B cq 111.729 [l SensorZ O xQueueSend Sent post #16 4 (mRk! 14 @15 W16 .
arameter:
123.729 DSensorX O xQueueSend Sent post #17 5 O1’ @1 O’ @i Qg
124.730 [SensorY O xQueueSend Sent post #18 6 01 W4 @5 mEe O +1
125.786 [Control O xQueueReceive Received post #13 5 313 14 @15 W6 @17 +1 8 =
how in Tri
126.787 . Control O xQueuveReceive Received post #14 4 B4 @15 W6 [EO17 E18 ——
I 1ar o B A~__._ NN e [PETO S B “r a m s mm 10 m 17 rmio

(Example from Percepio Tracealyzer)

Common RTOS-related bugs —how avoid and detect

percepio

SENSING SOFTWARE

Johan Kraft, Percepio AB

Sharing resources using a mutex

/* Task A */ /¥ Mazk B/
xSemaphoreTake (Mutexl) ;
global->x = x1;

xSemaphoreTake (Mutexl) ;
global->x = a;
global->y = b; global->y = yl
xSemaphoreGive (Mutexl) ; xSemaphoreGive (Mutexl) ;

/* Task C */
xSemaphoreTake (Mutexl) ;
global->x = pl;
global->y = p2;
xSemaphoreGive (Mutexl) ;

Semaphore "Mutex1”
Mutex — a Semaphore for mutual exclusion

(try to avoid, but sometimes necessary!)

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB S ENSING SOFTWARE

Sharing resources using a dedicated task

/* Task A */

msg.cmd = SEND;
msg.data = x;

msg.len = sizeof (x);
xQueueSend (TX Queue) ;

/* Task B */

msg.cmd = SEND;
msg.data = y;
msg.len = sizeof (y):;

xQueueSend (TX Queue) ;

A 4

< "TX_Queue”

/* Task TX Task */

while (1) {

switch (msg.cmd) {

break;

/* Waits until message or timeout */

sts = xQueueReceive (TX Queue, &msg, FOREVER);

case SEND: tx write(msg.data, msg.len);

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

percepio

SENSING SOFTWARE

RTOS Benefits:
Easier to design complex applications

e Easier to handle multiple interfaces (TCP/IP, USB, HMI...)

— One task for each purpose...

e Easier to pass data between ISRs and application
— Safely! (home-cooked solutions may not be)
— Reduce ISR processing time — let a task do the work

e Easier to maintain and extend
— Tasks allow for modular design
— Easy to add new tasks, independent of period or trigger

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

RTOS Benefits: More efficient design

* Avoid wasting cycles on inefficient polling
— Tasks sleep individually, wakes up on the right RTOS event.

e Save energy using Low Power Modes
— Use the Idle Task to enter LPM, using e.g. “wfi” instruction.
— Tickless Idle — disable the RTOS tick interrupt.

* More responsive system — shorter interrupt latency

— Minimize ISR time by delegating jobs from ISRs to tasks.
— Activate the task from the ISR, using a semaphore

e Task starts immediately, thanks to pre-emptive scheduling

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

RTOS Overhead

Code (ROM)
— Typically 5-10 KB
Data (RAM)
— 200-300 bytes for common kernel data
— ~128 byte per task stack + ~50 bytes for task control block
Processor time
— Task-switches take 100-200 clock cycles (a few thousand times/sec)
— Periodic OS tick — very small impact in itself
Interrupt latency

— May increase due to critical sections in RTOS kernel

— Time-critical ISRs can be allowed to pre-empt the RTOS kernel, if they
don’t use any RTOS services.

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

RTOS Challenges - Learning curve

e An RTOS introduces a new abstraction level — tasks

— You are no longer in direct control over the code execution!

* You need to design how the tasks interact and share data

— When to use a semaphore, mutex, message queue, etc.

* You need to decide suitable task priorities
— Relative urgency — not always obvious
* You need to understand
— The general principles
— Best practices and common pitfalls
— The APl and configuration of your RTOS

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

RTOS Challanges - Test & Debug

 The system behavior is not apparent from the source code
— Timing and RTOS scheduling is not visible!

* Task-switches are often asynchronous to the program flow

— Strikes at different locations, depending on “random” variations in input
timing and execution times

— There can be a enormous number of possible execution scenarios, with
different timing and execution order

* Why do | need to worry about this?
— Bugs may depend on timing, very difficult to find and reproduce!
— Risk for “nightmare bugs” that only appear under special conditions
— Most debug tools provide little support for multi-tasking issues

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

Symptoms of RTOS-related bugs

Tasks works fine in isolation but not as a full system

Slow performance

System locks up, or sometimes stops responding

System appears brittle — minor changes results in weird errors
Random variations in output timing

Sometimes corrupted data, or wrong output

Random crashes/hard-faults

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

Problem: Stack overflow

 Symptom: Strange behavior, hard faults (crashes)

* Problem: Each task has a separate stack, if not large enough
the stack may accidentally overwrite other data...

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

How avoid stack overflow

Check the “high watermark” of the stack usage for each task
after extensive testing, make sure there is some safety margin

Make sure to enable stack overflow detection in your RTOS
Some IDEs can calculate the worst case stack usage
Don’t use recursion! :-)

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

Problem: Task starvation (slow response)

 Symptom: One or several tasks |_|
runs slow, or not at all .

* Problem: Higher priority tasks > 13
use too much processor time,
not enough remaining for the
lower priority tasks.

lawl | HS
aun | HS
glaun | H4s

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

How avoid task starvation

Avoid polling/busy wait and make sure to put tasks to sleep
after completion (delay, wait for semaphore...), so other tasks
of lower priority can execute.

Use higher priorities only for tasks with predictable execution
pattern and shorter execution times

Tasks triggered by external events and/or longer execution
times should have lower priorities

Divide longer jobs into multiple task, with appropriate priority
Rate monotonic schedulability analysis?

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

Problem: Task jitter

 Symptom: Disturbances in the timing of periodic tasks

* Problem: The execution of a task is sometimes delayed, by
higher priority tasks or by ISRs.

[B] Actor Instances [Periodicity - From Ready) _—=

Views Resolution Zoom Customize

7.000 W (startup)

£.500 @

6.000

mmmmmmmmm
5500 !
5000 pooOo OODOOOOOOOOOOOOOOC o aocdoooooOpoOoOoOOoODOn 4OO0Oofq
4500

1.900.000 2.000.000 2.100.000

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

How avoid task jitter

 Make sure to use preemptive scheduling
 RTOS tick rate should be a lot higher than the shortest task period

 Don’t disable interrupts to protect critical sections
— Disables the RTOS!
— Use mutexes, or let a dedicated task manage the resource.

e If disturbance is from higher priority tasks
— Change priorities?
— Add an offset to the execution, so they don’t overlap?
— Reduce their execution time?

e |f disturbance is from ISRs

— Reduce their execution time, e.g., delegating processing to tasks.
— Put time-critical code in high-priority ISR, driven by periodic timer.

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

Problem: Priority Inversion

 Symptom: High priority task L]
is delayed by lower priority
= 40.000
taSkS | i —|xSemaphDreTakeiSem1] I
* Problem: Mutex held by | T SR
lower priority task, gets
-~ |xSemaphDreGive(Sem1j I
preempted and delayed by = 1 :l-':'—|xSemaphoreTake(Semﬂreturnsﬂﬂerﬂﬂ?us

.‘"—|xSemaphnreGive(Sem1] I

mid priority task.

e (Can also occur with queues
and other blocking objects

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

How avoid priority Inversion

e Avoid sharing resources between tasks (e.g., using mutexes)

— Have a dedicated task that manage each resource

e Ifsharingis required, use Mutexes with “Priority Inheritance”

— If a high-priority task H is waiting for a resource, held by a lower-priority
task L, the RTOS temporarily raises the priority of task L to avoid pre-
emption by irrelevant middle-priority tasks.

* Generally, use a single blocking point per task (to get input)

— Avoid mutexes...

— Avoid other blocking, e.g., when writing to a full message queues

e Set timeout O, check return value and handle any error

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

Problem: Deadlock

e Symptom: Multiple tasks | N
suddenly stop to execute 2| |»

| xSemaphoreTake(Sem1) I

* Problem: Circular wait on ||
blocking kernel calls

= ~ —[xSemaphoreTake(Sem2) biods |

* “Solved” by timeout here,
but this can hide the IRRE e
problem!

I xZemaphoreTake(Sem2) timeout after 1947 ps

- | wsemaphoreGivelSem1) I

.'I. — vTaskDelay(1)

fﬂ--l xZemaphoreTake(Zem1) returns after 1096 s |

-~ | w3emaphoreGivelSem) I

, | xZemaphoreGivelSemd) I

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB S ENSING SOFTWARE

How avoid deadlock

Avoid critical sections...

Especially avoid multiple nested critical sections, using two or
several mutexes at the same time!
But if required, make sure that:

— All tasks locks and unlocks the mutexes in the same order, and
— The unlocking should be inverted to the locking order.

Task 1 Task 2

Lock MutexA Lock MutexA
Lock MutexB Lock MutexB
Unlock MutexB Unlock MutexB
Unlock MutexA Unlock MutexA

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

How detect RTOS bugs

e Diagnostic features in your IDE
— Stack calculation features
— RTOS-aware debugger (inspect object states)

e Diagnostic features in your RTOS
— Return value from API calls
— CPU usage statistics (per task)
— Stack diagnostics — high watermark and overflow detection

* But to see a timeline, you need tracing!

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

RTOS-aware tracing

........

Software-defined Tracing

Trace recorder library — stores RTOS
events like task switches and API calls.
Also allows for application logging

Common RTOS-related bugs —how avoid and detect DEFEED'D
Johan Kraft, Percepio AB

SENSING SOFTWARE

RTOS Trace Visualization

8 e
i
-

@
1852 198 2017 2047 408 5476 286009 260 0 a1
s 2999 0000 N1 1676 oA N 4

WM Mam Mss 39 e Mars 1 |

o 102 W 99 138 1034 138

99% 1060 617 EG¥ s

3 74 1000 1035 1081 1m0 L1 2060 13972 BOM MON 111 118 12961 §

16 564 1006 103 TOM 1050 1080 1061 IFST IROM 1NN 1M 16980 (6570 1

00 1000 1001 99 99M 99 1

2o siow 10 139w ve w3 |

NN W00 T e 19 15we |

D - =) e | [we . Faoenl Ll b L i
i - ‘ x - " - ‘
= o 7 - | Tixk Cnnrl - Bt T SPS— Tk Contrato
]]] [b | s L g s |
]] [l [] « | . = ‘ > "
.] L]]]]] g ! Se— » ‘ - | |
e ¥ oot v (R . z - s ‘ |
H
vt ot e] : "1
- :
it . o
r R 1 | Tonke Mambiar - |
- . - .. x = ‘ e e

Common RTOS-related bugs —how avoid and detect pEFCEp|D
Johan Kraft, Percepio AB

SENSING SOFTWARE

Tracealyzer - Main View

[N Tracealyzer for VxWorks - demouwvr = | =

File Find VYiew Bookmarks Help

_ y - [Server] Sendina responseta client (Queue: 2) | |21 | Actor Information TaSk SCthUl Ing
B xKernel: ServerTask |- !-__ - Task vukemel: ServerTask P t
.._:";- -| Actor Ready: vxKernel: ClientTask3 | bl Inlstance: 1;";3‘3 ree m p IO n S
E | -.___‘__ e e — ---;nggereddby. MNone |
viKernel: ClientTask3 msoCReceive(Msg-3) returns (after 408 Us) El- Triggers: 4 instances
= 3 - Bxecution Time: 477 (=) nte r r u pts
o B Response Time: 1.1071 {ms.us)
| [Server|Response 3001001 sentOK. | &3 Fragmentation: 8 RTOS A P | Ca | |S
-~ [Server] Wailing to receive I - CPU Usage: 9,14 % Bl k
I~ msaQReceive[Msal-0) I - Priority: 30 OCKIN
I: vxKernel: ServerTask |—I \ B Performs 51 eventis) g

_________ _ 1 [Server] Request 4000001 received (8 bytes) |

I -| [Server] Processing request 4000001 | View Controls ReS U m eS
: | Next Instance ‘ TlmeOUtS

; . _ \.ﬁewsizelZBE_ (us) RTOS TICk
- semTake(Sem- N Bio ek - W Grid |100 (1) bl e U ser EVe ntS

® INT-3 |

semTake[Sem-1) retur

vxKernel: tWdbTask |

Zoom In

Zoom Out ‘

- | [Server] Sending responseto client (Queue 3} |

II — msgQSend(Msgl-d)

b | Actor Ready: vxKernel: ClientTaskd |

B vxKernel: ClientTasks | -

e

~—— msoReceiv gid-4) returns (after 530 y5}

B v:Kernel: ServerTask —— tas} (12}

| [Server] Response 4001001 sent OK |

B vxKernel: UETestTask | . B | | — At
) = |[Ser\.ler]‘.'\’aitingto TECEiVE I

taskDelay(s

l vxKernel tWyRBuffMar | ey

B vxkernelipcom egd |

47750 {ms.ps)

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

[M:gQ-0 Msq@ s
File View Filter Tasks Filter Calls
Timestamp | Actor | Event Block time | Status | Size Queue ﬂ Timestamp: 47.325
47242 E vxKernel: CIientT.O msgQSend . .Sent post #1 .1 .IEI 1 Actor: [l vxKemel: ClientTaskd
47269 [l] vaKernel: ClientTO msgQSend Sent post #2 2 [l 2 Loon: orsptdond
47297 [l vxKernel: ClientTO msgQSend Sent post #3 3 1 2 3 Status:Instant
Parameter: N/A
47.325 [l vxKernel: ClientT O msgQSend Sent post #4 4 Bt @z HE3I @4
47.325 [l] vaKernel: Server O msgGQReceive Received post £1 3 1 [s w3 w4
47 453 . vxKernel: Server' Q) msglReceive Received post &2 2 B2 W B
Show in Trace
47 601 . vxKernel: Server Q) msglReceive Received post £3 1 3 [ES
4&7.740 . vxKernel: Server) msgQReceive Received post #4 0 H-
47.892 . vxKernel: Server @ msglReceive 274 Trying to receive. . 0 Empty Goto Receiving Event
50622 [l vxKernal: ClientT(C) msgQSend Sent post #5 1 (g
50622 . vxKernel: Server @) msgQReceive Received post 5 i)]
50755 . viKernel: Server @ msgQReceive 867 Trying to receive...] Empty
51.625 [l vxKernel: ClientTC msgQSend Sent post #6 1 H6
51626 . vxKernel: Server O msglReceive Received post #6 0 6
51.766 . vxKernel: Server @ msglReceive 2.858 Trying to receive... 0 Empty
54 622 E wxKernel: ClientTO magdSend Sent post &7 1 B7
R4 622 . vxKernel: Server D msglReceive Received post §7 0 |
54 752 . vxKernel: Server @ msglReceive 215 Trying to receive. . 0 Empty
55670 . vxKernel: ClientTO) msglSend Sent post #3 1 8
55670 . vxKernel: Server D msgQReceive Received post £3 0 2
55.803 . viKernel: Server @ msglReceive 824 Trying to receive. . 0 Empty
56626 . vxKernel: ClientTO msgldSend Sent post #3 1 9
56627 . viKernel: Server O msgQReceive Received post £3] g
56747 . vxKernel: Server @ msgQReceive 1.752 Trying to receive. .. 0 Empty
52 499 [0 vxKemnel: ClientTO msg@Send Sent post #10 1 1o
58,439 [l] vxKerel: Server O msgQRecsive Received post £10 o 10
58.656 . vxKernel: Server @ msgQReceive 735 Trying to receive... i} Empty
59.430 . vxKernel: ClientTO msglSend Sent post #11 1 | R
Eo 421 Ml g ar) Fall =} By 3 %14 o . 11 :_J

Kernel Object History: shows all events on a specific kernel object

percepio

SENSING SOFTWARE

-

(2] Communication Flow

File View Filter Actors Filter Objects Zoom

B vxKemel: ClientTask2 B xKernel: ClientTask3 B Kemel: ClientTasks D HECEWE':I by
- vxKemel: ServerTask

= 7 E] S:arrt to by

=l vickemel: Client Task1

- Sends to objscts
vxkernel: ServerTask

El Receives from objects
| . B MsgQ-1
: =) Received by
| - vxKemel: ClientTask1
: : El Sends to objects
B nT-2 [+ Recsives from obje
i Mutex/bi-directiona
: - Communicates with
B Sentto by
: [vxKemel: ServerTask
i Mutesc/bi-directional objects
=1- Commuricates with actors
L+ Receives From
- Sends To
i Shares Mutexes/bi-directionals
[l vxKernel: ClientTask - vkemel: Client Task2
- vkemel: Client Task3
i vackiemel: Client Tagk4

#]--[F]--[F]

Communication Flow: dependencies through kernel objects

percepio

SENSING SOFTWARE

(2] CPU Load Graph

D-Eﬁ

Views Resolution Zoom Customize

CPU Load Graph

oy

4o

b

30 %

25%

0%

e
15%

10 %

100.000 200.000 300.000 400.000 500.000

&00.000

XA
ipcom_egd
tJobTask
tnhRBuftMgr
tM=tl
UETestTask
ServerTask
ClientTask4
ClientTask3
ClientTask?
ClientTask1
ipcom_tickd
SensorTask
tin'dbTask
tShelll
svFuncCallTas

B ckemel
B ckemel
B Kemsl:
B Kemel:
B ckemel
B xckemel:
B xkemel:
B xKemnel:
B vxkemnel:
B vxkemnel:
[vxkemnsl:
[wxkemnel:
[] vxkemnel:
[vxkemnel:
[vxkernsl:
B InT-0

B INT-2

B INT-3

B inT-4

=

CPU Load Graph: Use of processor cycles, per task and ISR

percepio

SENSING SOFTWARE

(2l User Event Signal Plot ==
Views Resolution Zoom Customize
User Event Signal Plot ﬂ [lf_"_,ns‘.n'l.l'ave} Walue: b6
100 B Sinviave Timestamp: 364.927 {ms.ps)
B Cos\viave i ‘u"alue:. i
[+]- Associated data
]
60
40
20 *
1]
20
Zoom In ‘
-A0
Zoom Out |
&0 ! ! Show In Main View
Show In Log
-80 § !
-100 -
200.000 300.000 400.000
4]
[SinWave] Value: 23

User Event Signal Plot: Based on "User Event” data percepio

SENSING SOFTWARE

Example 1: Detecting and analyzing Task Jitter

[N Actor Instances (Periodicity - From Ready) -" | [=]

Views Resolution Zoom Customize

Actor Instances (Periodicity - From Ready) = x|
7.000 B (stertup)

@ ControlTask
6200 ServerTask
6.000 o : o [samplerTask

5.500 B Trr Svc

EQ0 pooo ODCOOOOOOOOOOOOOOOOOO0 ooOooOooDOoOOO0pOCoOCOO0gdnD O00f
4500
4.000
3.500
3.000
2.500
2.000
1.500
1.000
500

0

1.500.000 2 000000 2.100.000

[+ J— i

Time: 2.089.907, Actor: SamplerTask, Periodicity From Ready: 5.000 (ms.ps)

Task should execute every 5 ms, but random variations of 1-2 ms!

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

Compare with the Task Trace...

-
[Eh Harizontal View - 2 views

Dl@ﬁ-‘

Views Resolution Zoom Customize

[==]
(=]

AR LAl e NN o -]
LNt Lnesin Calnss Lneatn canes
SSSE288222

@

[
£ D 0D

2.000.000 2.010.000 2.02

=1

0

(=]
]
(%]
]
S
]
(=]
[=1

Trace View

m(startup)

- ControiTask - I
m ServerTask ;;]
SamplerTask D |:| |:| |:| D |:| D

m Trmr Sve

2.000.000 2

[+ il

Tirne: 2.020.618, Actor: SamplerTask, Periodicity From Ready: 6.710 (ms.ps)

(=]
il
(==
=]
=

020.000 2.030.000

B istartup)
Control Task

ServerTask
[SamplerTask
B Tmr Sve

IDLE

B istartup)
Control Task

O ServerTask
] samplerTask
B Tror Swc

ol

=

Something delays the activation of SamplerTask, probably ControlTask!

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

percepio

SENSING SOFTWARE

Why delayed activation?

oo NewTime2002) |
*W
| NewTime(2005) |
B ------ — [NewTime(2006) |
NewTime(2007) |

B serverTask I

|l_I3|:| ntrolTask

_____ T A B | v
T [NewTmeoi2) |
[NewTime(2013) |

_SamplerT as kl
'l_licuntrn | Task I

ControlTask seems to disable interrupts!

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

e 010) I 2.020.00

T [NewTimei2001) | 2,010,000

percepio

SENSING SOFTWARE

When using a Mutex instead of disabling interrupts...

SamplerTask
l ControlTask

(dnpe)s

NewTime(2008)

| NewTime(2008)

P | [ControlTask events] Updating fle I

]

- IxSemﬂph-:ureTakeRecursive(FS_l‘-.-‘lLtac] I
| NewTime(2010)
T NewTime(2011)

I xZemaphoreGiveRecursive(F3_Mulex) I

anye)E)

g

O LG Ty

SE UaJas

_'-' ;,' — MewTime(2012)
= ¥ . « .
= o
s [NewTime(2013) | Now perfect 5 ms periodicity!
Actor Instances (Periodicity - From Ready) =] x|
5.500 W (startup)
Control Task
LR i o i i o i ServerTask
[SamplerTask
A 500 B Tmr Sve
4.000
3.500
3.000
2.500
2.000
1.500
1.000
500
1.800.000 1.500.000 2.000.000 2.100.000 2200

Common RTOS-related bugs —how avoid and detect

percepio

Johan Kraft, Percepio AB S ENSING SOFTWARE

Example 2: Priority Inversion

Sampler‘rask| = [2
i ControlTask ————— [Watchdog margin] 3 ms
; =l
B ServerTask | i
SEmplerTaskl ------ — [Walchdogmargin] 11
El
® Watchdogl e 2 |2 B
= |8 Occurred in NASA’s
B ServerTask | = |3 »u-IErrurmessuges]Wutchdngrm I Pathfinder mission
. H_J

Common RTOS-related bugs —how avoid and detect DEFEED|D

Johan Kraft, Percepio AB S ENSING SOFTWARE

SamplerTask blocked, stops kicking the Watchdog

B ServerTask] P

o

o
Soex
L

SSox
e

B ControlTask | ~ =
; essrssappesmme— XQueueSend(ControlQueue) returns after 9253 ps
| SampleTask] : -
N~ I 1 ma
B serverTask l ‘

[l SamplerTask}—" -

i. ‘.".'atchdogISR]

I serverTask |

Common RTOS-related bugs —how avoid and detect

ercepio

Johan Kraft, Percepio AB E

SENSING SOFTWARE

Blocked on Send means full queue... ControlTask is not
reading the queue fast enough?

16 | I \watchdog margin
14 k ' Error messages

12 \
y ;’H‘x m ; \

\\.Ju

g
B
4
2
0 - \‘
ue

™
No Val
0 100.000 200.000 300.000 !
100 % ' ' (startup)
90 % | Il ControlTask
- [ServerTask
0% | [I] SamplerTask
el | : Watc ISR
60 % [ks
50 %
40%
0% ServerTask has higher
’:’?‘ priority than ControlTask,
;f does not leave enough

"o 100.000 200.000 300.000 cycles when high load!

Common RTOS-related bugs —how avoid and detect DEFEED'D

Johan Kraft, Percepio AB

SENSING SOFTWARE

With swapped task priorities — problem solved!

i ; B
El) Horizontal View - 2 vi EENEEE
S i i » . i ——

Views Resclution Zoom Customize
User Event Signal Plot i=| x|
15 B ‘/ztchdog margin
14
12
10
2
&
4
2
0
0 100.000 200.000 300.000 400.000 500.000
CPU Load Graph :=| x|
100 % B isteriup)
I .I I I B ServerTask
0% I I . . . I I I .] ControlTask
I I l I L Il . I I B SamplerTask
60 %
40 %
0 100.000 200.000 300.000 400.000 500.000
< | 2l
Time: 76.788, Value: 10,00, Label: [Watchdog margin] 10 ms

Common RTOS-related bugs —how avoid and detect
Johan Kraft, Percepio AB

percepio

SENSING SOFTWARE

Getting the Data

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

Snapshot trace

Embedded HostPC

Application

Dump

: > Tracealyzer
(.bin/.hex)

A 4

Snapshot Trace Recorder

Kernel

Target Processor

Works for any processor and debugger, can be deployed in field.
Gives a short trace only, limited by RAM buffer size.

Johan Kraft, Percepio AB

Common RTOS-related bugs —how avoid and detect pEFCEp|D
SEN

SENSING SOFTWARE

Streaming trace

Host PC
Embedded
Application
J, COM
<—> Tracealyzer
port
N
Percepio Y
RTOS —> Trace
Recorder \
USB 2

cable \
tracel.psf
USB CDC
Processor

Unlimited trace duration, small runtime footprint
Several interfaces can be used (USB, UART, TCP/IP, debug probe...)

Common RTOS-related bugs —how avoid and detect DEFEED'D

Johan Kraft, Percepio AB

SENSING SOFTWARE

Questions?

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE

