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Real-Time Operating Systems

* A base software platform for your firmware
* Provides multithreading

— Tasks — Separate threads of execution
— Supporting services - Semaphores, Queues, Timers, etc.

An RTOS is fast, compact and deterministic
— Common also on (32-bit) MCUs

¢ I\/Iany EXiStS, some more common
— FreeRTOS, uC/0S, ThreadX, VxWorks...

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB



RTOS multi-tasking

”Superloop” design

while (1) {
if (conditionl) {
Funcl () ;
}

if (condition2) {
Func2 () ;
}

if (condition3) {
LowPowerMode () ;
}else/{
Sleep (10)
}

Each task has:

RTOS system

/* Task 1 */

while (1) {
DelayUntil (Time + 10);
Funcl () ;

}

/* Task 2 */

while (1) {
WaitForEvent (B) ;
Func?2 () ;

}

/* Idle task */
while (1) {
LowPowerMode () ;

}

» Separate execution context (stack and registers)
* Fixed scheduling priority (relative urgency)
* Scheduling status (ready/waiting)
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Runtime view: RTOS multi-tasking
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(Example from Percepio Tracealyzer)

Most RTOS use fixed priority, pre-emptive scheduling:

* Always selects task with highest priority, that is ready to execute

* May use “round-robin” (alternate between tasks) if same priority

 The RTOS can pre-empt a running task at any point, to let a higher priority task start.
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Signaling a task using a semaphore

/* Task A */

/* ISR X */

xSemaphoreGive (SemB) ; xSemaphoreGiveFromISR (SemB) ;

Semaphore "SemB”

/* Task B */

while (1) {
/* Waits here, until signaled */
xSemaphoreTake (SemB, FOREVER) ;
DoMyThing () ;
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Runtime view: semaphore
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(Example from Percepio Tracealyzer)
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Passing data

using message queues

/* Task A */

msg.cmd = CMDI1;
msg.paraml = x;
msg.param2 = y;
xQueueSend (gB) ;

/* ISR X */

msg.cmd = CMD2;
msg.paraml = a;
xQueueSendFromISR (gB) ;

A 4

@ssage gueue “gB”

/* Task B */

while (1) {

/* Waits until message or timeout */

sts = xQueueReceive (gB, é&msg, 10);

if (sts == TIMEOUT) {
HandleTimeout () ;

}else switch (msg.cmd) {
case CMD1l: HandleEventl (); break;
case CMD2: HandleEvent2 (); break;

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

percepio

SENSING SOFTWARE




Runtime view: message queues
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(Example from Percepio Tracealyzer)
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Sharing resources using a mutex

/* Task A */ /¥ Mazk B/
xSemaphoreTake (Mutexl) ;
global->x = x1;

xSemaphoreTake (Mutexl) ;
global->x = a;
global->y = b; global->y = yl
xSemaphoreGive (Mutexl) ; xSemaphoreGive (Mutexl) ;

/* Task C */
xSemaphoreTake (Mutexl) ;
global->x = pl;
global->y = p2;
xSemaphoreGive (Mutexl) ;

Semaphore "Mutex1”
Mutex — a Semaphore for mutual exclusion

(try to avoid, but sometimes necessary!)
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Sharing resources using a dedicated task

/* Task A */

msg.cmd = SEND;
msg.data = x;

msg.len = sizeof (x);
xQueueSend (TX Queue) ;

/* Task B */

msg.cmd = SEND;
msg.data = y;
msg.len = sizeof (y):;

xQueueSend (TX Queue) ;

A 4

< "TX_Queue”

/* Task TX Task */

while (1) {

switch (msg.cmd) {

break;

/* Waits until message or timeout */

sts = xQueueReceive (TX Queue, &msg, FOREVER);

case SEND: tx write(msg.data, msg.len);
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RTOS Benefits:
Easier to design complex applications

e Easier to handle multiple interfaces (TCP/IP, USB, HMI...)

— One task for each purpose...

e Easier to pass data between ISRs and application
— Safely! (home-cooked solutions may not be)
— Reduce ISR processing time — let a task do the work

e Easier to maintain and extend
— Tasks allow for modular design
— Easy to add new tasks, independent of period or trigger
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RTOS Benefits: More efficient design

* Avoid wasting cycles on inefficient polling
— Tasks sleep individually, wakes up on the right RTOS event.

e Save energy using Low Power Modes
— Use the Idle Task to enter LPM, using e.g. “wfi” instruction.
— Tickless Idle — disable the RTOS tick interrupt.

* More responsive system — shorter interrupt latency

— Minimize ISR time by delegating jobs from ISRs to tasks.
— Activate the task from the ISR, using a semaphore

e Task starts immediately, thanks to pre-emptive scheduling
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RTOS Overhead

Code (ROM)
— Typically 5-10 KB
Data (RAM)
— 200-300 bytes for common kernel data
— ~128 byte per task stack + ~50 bytes for task control block
Processor time
— Task-switches take 100-200 clock cycles (a few thousand times/sec)
— Periodic OS tick — very small impact in itself
Interrupt latency

— May increase due to critical sections in RTOS kernel

— Time-critical ISRs can be allowed to pre-empt the RTOS kernel, if they
don’t use any RTOS services.
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RTOS Challenges - Learning curve

e An RTOS introduces a new abstraction level — tasks

— You are no longer in direct control over the code execution!

* You need to design how the tasks interact and share data

— When to use a semaphore, mutex, message queue, etc.

* You need to decide suitable task priorities
— Relative urgency — not always obvious
* You need to understand
— The general principles
— Best practices and common pitfalls
— The APl and configuration of your RTOS
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RTOS Challanges - Test & Debug

 The system behavior is not apparent from the source code
— Timing and RTOS scheduling is not visible!

* Task-switches are often asynchronous to the program flow

— Strikes at different locations, depending on “random” variations in input
timing and execution times

— There can be a enormous number of possible execution scenarios, with
different timing and execution order

* Why do | need to worry about this?
— Bugs may depend on timing, very difficult to find and reproduce!
— Risk for “nightmare bugs” that only appear under special conditions
— Most debug tools provide little support for multi-tasking issues
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Symptoms of RTOS-related bugs

Tasks works fine in isolation but not as a full system

Slow performance

System locks up, or sometimes stops responding

System appears brittle — minor changes results in weird errors
Random variations in output timing

Sometimes corrupted data, or wrong output

Random crashes/hard-faults

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB



Problem: Stack overflow

 Symptom: Strange behavior, hard faults (crashes)

* Problem: Each task has a separate stack, if not large enough
the stack may accidentally overwrite other data...
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How avoid stack overflow

Check the “high watermark” of the stack usage for each task
after extensive testing, make sure there is some safety margin

Make sure to enable stack overflow detection in your RTOS
Some IDEs can calculate the worst case stack usage
Don’t use recursion! :-)
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Problem: Task starvation (slow response)

 Symptom: One or several tasks |_|
runs slow, or not at all .

* Problem: Higher priority tasks > 13
use too much processor time,
not enough remaining for the
lower priority tasks.

lawl | HS
aun | HS
glaun | H4s
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How avoid task starvation

Avoid polling/busy wait and make sure to put tasks to sleep
after completion (delay, wait for semaphore...), so other tasks
of lower priority can execute.

Use higher priorities only for tasks with predictable execution
pattern and shorter execution times

Tasks triggered by external events and/or longer execution
times should have lower priorities

Divide longer jobs into multiple task, with appropriate priority
Rate monotonic schedulability analysis?
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Problem: Task jitter

 Symptom: Disturbances in the timing of periodic tasks

* Problem: The execution of a task is sometimes delayed, by
higher priority tasks or by ISRs.
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How avoid task jitter

 Make sure to use preemptive scheduling
 RTOS tick rate should be a lot higher than the shortest task period

 Don’t disable interrupts to protect critical sections
— Disables the RTOS!
— Use mutexes, or let a dedicated task manage the resource.

e If disturbance is from higher priority tasks
— Change priorities?
— Add an offset to the execution, so they don’t overlap?
— Reduce their execution time?

e |f disturbance is from ISRs

— Reduce their execution time, e.g., delegating processing to tasks.
— Put time-critical code in high-priority ISR, driven by periodic timer.

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE



Problem: Priority Inversion

 Symptom: High priority task L]
is delayed by lower priority
= 40.000
taSkS | i —|xSemaphDreTakeiSem1] I
* Problem: Mutex held by | T SR
lower priority task, gets
-~ |xSemaphDreGive(Sem1j I
preempted and delayed by = 1 :l-':'—|xSemaphoreTake(Semﬂreturnsﬂﬂerﬂﬂ?us

.‘"—|xSemaphnreGive(Sem1] I

mid priority task.

e (Can also occur with queues
and other blocking objects
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How avoid priority Inversion

e Avoid sharing resources between tasks (e.g., using mutexes)

— Have a dedicated task that manage each resource

e Ifsharingis required, use Mutexes with “Priority Inheritance”

— If a high-priority task H is waiting for a resource, held by a lower-priority
task L, the RTOS temporarily raises the priority of task L to avoid pre-
emption by irrelevant middle-priority tasks.

* Generally, use a single blocking point per task (to get input)

— Avoid mutexes...

— Avoid other blocking, e.g., when writing to a full message queues

e Set timeout O, check return value and handle any error
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Problem: Deadlock

e Symptom: Multiple tasks | N
suddenly stop to execute 2| |»

| xSemaphoreTake(Sem1) I

* Problem: Circular wait on ||
blocking kernel calls

= ~ —[xSemaphoreTake(Sem2) biods |

* “Solved” by timeout here,
but this can hide the IRRE e
problem!

I xZemaphoreTake(Sem2) timeout after 1947 ps

- | wsemaphoreGivelSem1) I

.'I. — vTaskDelay(1)

fﬂ--l xZemaphoreTake(Zem1) returns after 1096 s |

-~ | w3emaphoreGivelSem) I

, | xZemaphoreGivelSemd) I
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How avoid deadlock

Avoid critical sections...

Especially avoid multiple nested critical sections, using two or
several mutexes at the same time!
But if required, make sure that:

— All tasks locks and unlocks the mutexes in the same order, and
— The unlocking should be inverted to the locking order.

Task 1 Task 2

Lock MutexA Lock MutexA
Lock MutexB Lock MutexB
Unlock MutexB Unlock MutexB
Unlock MutexA Unlock MutexA

Common RTOS-related bugs —how avoid and detect pEFCEp|D

Johan Kraft, Percepio AB

SENSING SOFTWARE



How detect RTOS bugs

e Diagnostic features in your IDE
— Stack calculation features
— RTOS-aware debugger (inspect object states)

e Diagnostic features in your RTOS
— Return value from API calls
— CPU usage statistics (per task)
— Stack diagnostics — high watermark and overflow detection

* But to see a timeline, you need tracing!
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RTOS-aware tracing

........

Software-defined Tracing

Trace recorder library — stores RTOS
events like task switches and API calls.
Also allows for application logging
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RTOS Trace Visualization
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Tracealyzer - Main View
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Kernel Object History: shows all events on a specific kernel object
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(2] Communication Flow
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Communication Flow: dependencies through kernel objects
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(2] CPU Load Graph
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CPU Load Graph: Use of processor cycles, per task and ISR
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Example 1: Detecting and analyzing Task Jitter

[N Actor Instances (Periodicity - From Ready) -" | [=]
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Time: 2.089.907, Actor: SamplerTask, Periodicity From Ready: 5.000 (ms.ps)

Task should execute every 5 ms, but random variations of 1-2 ms!
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Compare with the Task Trace...
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Something delays the activation of SamplerTask, probably ControlTask!

Common RTOS-related bugs —how avoid and detect

Johan Kraft, Percepio AB

percepio

SENSING SOFTWARE




Why delayed activation?

oo NewTime2002) |
*W
| NewTime(2005) |
B ------ — [ NewTime(2006) |
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_____ T A B | v
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ControlTask seems to disable interrupts!
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When using a Mutex instead of disabling interrupts...
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Example 2: Priority Inversion
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SamplerTask blocked, stops kicking the Watchdog
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Blocked on Send means full queue... ControlTask is not
reading the queue fast enough?
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With swapped task priorities — problem solved!
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Getting the Data
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Snapshot trace

Embedded HostPC

Application

Dump

: >  Tracealyzer
(.bin/.hex)

A 4

Snapshot Trace Recorder

Kernel

Target Processor

Works for any processor and debugger, can be deployed in field.
Gives a short trace only, limited by RAM buffer size.
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Streaming trace

Host PC
Embedded
Application
J, COM
<—> Tracealyzer
port
N
Percepio Y
RTOS —> Trace
Recorder \
USB 2

cable \
tracel.psf
USB CDC
Processor

Unlimited trace duration, small runtime footprint
Several interfaces can be used (USB, UART, TCP/IP, debug probe...)
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Questions?
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