
How to visualize
response times
in FreeRTOS

Copyright ©2022 Percepio AB. All Rights Reserved.

Efficient development of FreeRTOS-based
firmware requires understanding of the timing
and interactions between tasks, interrupts and
the kernel.

How to visualize
response times
in FreeRTOS
Efficient development of FreeRTOS-based firmware
requires understanding of the timing and interactions
between tasks, interrupts and the kernel.

Percepio Tracealyzer is the premier solution for analysis and visualization

of FreeRTOS-based embedded software. It provides more than 30

graphical interconnected views of different aspects of the software’s

real-time behavior.

We collect and reproduce examples of how customers have applied

Tracealyzer to real-world issues. In this example, the customer developed

a networked system running a TCP/IP stack, a flash file system, and

an RTOS running on an ARM Cortex-M4 microcontroller. The system

contained several RTOS tasks, including a server-style task that responds

to network requests, and a log file spooler task. The response time on

network requests had been an issue in the past and when testing the

latest build, the situation had deteriorated. Now they really needed to

figure this out!

They started by comparing the source code between the two versions,

but they could not find any obvious cause for the longer response time.

There were many small changes, seemingly due to refactoring, but no

new functions were added. Therefore, they decided to use Tracealyzer to

compare the runtime behaviors of the old and new versions.

3

Traces were recorded from both versions under similar

conditions. They began the comparison in the Statistics

Report (Figure 1A and Figure 1B), which includes high-level

timing statistics such as CPU usage, number of executions,

scheduling priorities and response times.

Percepio

Tracealyzer

is the premier

solution for

analysis and

visualization

of FreeRTOS-

based embedded

software.

As expected, the Statistics Report revealed that response times

(total time from reception of a message until it is ready to

receive the next message) for the Server task were about 50

percent higher in the new version. However, the execution times

(i.e., the time spent executing) were similar: only about 7 percent

longer in the new version. This led to the conclusion that the

main reason for longer response time must be other tasks that

interfered. But which tasks?

fig.1A

fig.1B

4

To determine which tasks interfered with the Server task, we clicked on

the extreme values in the Statistics Report. This focused the main trace

view on the corresponding locations so we could see the details, as

illustrated below. And by opening parallel instances of Tracealyzer, one

for each trace, we could easily compare them and spot the differences.

Since the Server task performed several services, two User Events

were added (a User Event is basically a custom printf statement) to

mark where the specific requests were received and answered, labeled

ServerLog in Figure 2A and 2B. The zoom levels are identical, so we

could clearly see the longer response time in the new version. We

also saw that the Logger task preempted the Server task 11 times,

compared to only 6 times in the earlier version.

Moreover, we see that the Logger task ran on a higher priority than

the Server task, otherwise logging calls would not have preempted the

Server task.

So there seemed to be new logging calls added in the new version,

causing the Logger task to interfere more with the Server task. To see

what was logged, we added another User Event in the Logger task to

show all log messages in the trace view. Doing so informed us that

other tasks besides Server generated log messages, for instance the

fig.4

COMMUNIC ATI O N F LO W GR APH

5

ADC_0 task. To see all tasks sending messages to the Logger task, we

used Tracealyzer’s Communication Flow graph, illustrated in Figure 4.

The Communication Flow graph shows a summary of all operations on

message queues, semaphores and other kernel objects, performed by

tasks and interrupts in the trace. This visualizes the high-level application

design as well as runtime dependencies in the recorded situation.

In this case, the Communication Flow revealed that five tasks sent

logging messages. By double-clicking the LoggerQueue node in the

graph, we opened the Kernel Object History view to see all operations

on this message queue (Figure 5). As expected, we saw that Logger task

received messages frequently, one message at a time, and was blocked

after each message, as indicated by the red light in the Event column.

But was this really a good design? It is probably not necessary to write

log messages to file one-by-one. If we could increase the scheduling

priority of the Server task above that of Logger, then Server would not

be preempted as frequently and would thereby be able to respond

fig.5

OBJECT HISTO R Y V I E W , SH O W I N G O PERATIONS ON A PARTICULAR MESSAGE QUEUE.

6

faster. The log messages could then be buffered in LoggerQueue until

Server and other high priority tasks have completed. Only then would

Logger resume and process all buffered messages in a batch.

We tried that. Figure 6 shows the result. The highest response time
for the Server task was now just 5.4 ms, which was even faster than
in the earlier version (5.7 ms) despite more logging. This was possible
because the Logger task processed all pending messages in a batch
after Server was finished, instead of preempting Server for each log
message.

We could also see event labels for the message queue operations, and
as expected there were several xQueueSend calls in sequence, without
blocking or task preemptions. There were still some preemptions,
caused by the A/D converter tasks, but this no longer caused extra
activations of the Logger task.

Problem solved!

fig.6

HIGHEST R E SPO N SE T I ME O F SE R V E R TASK AFTER CHANGING THE PRIORIT IES .

7

How does it work?

Tracealyzer uses flexible software-defined tracing and works on any

processor. To record a trace, you only need to include Percepio’s

recorder library in your build, configure it and start the tracing.

The performance overhead is only a few microseconds per event, and

you can stream the trace continuously to the host computer via a debug

probe, TCP/IP, ITM or other channels. The trace can also be kept in a

target-side RAM buffer and uploaded on demand.

To learn more and get started,

please refer to the following on-line resources:

If you have any questions, please contact support@percepio.com or

your local distributor.

Copyright 2022 Percepio AB. All rights reserved. | info@percepio.com

Dr. Johan Kraft is CEO and founder of Percepio AB. Dr. Kraft is the original

developer of Percepio Tracealyzer, a tool for visual trace diagnostics that

provides insight into runtime systems to accelerate embedded software

development. His applied academic research, in collaboration with industry,

focused on embedded software timing analysis. Prior to founding Percepio

in 2009, he worked in embedded software development at ABB Robotics.

Dr. Kraft holds a PhD in computer science.

About Percepio

Percepio is the leading provider of visual trace diagnostics for
embedded and IoT software systems in development and in the field.

Percepio Tracealyzer combines software tracing with powerful
visualizations, allowing users to visually spot and analyze issues in
software recordings during development and testing.

Percepio DevAlert is a cloud service for monitoring deployed IoT
devices, combining automatic, real-time error reporting with visual
trace diagnostics powered by Tracealyzer. Complimentary evaluation
licenses are available for both products.

For more information, visit Percepio.com.

ABOUT THE AUTHOR//

Learn more about why Tracealyzer
is the premier solution for analysis
and visualization of FreeRTOS-based
embedded software.

Visit percepio.com/tracealyzer.

PRODUCT PAGE USER GUIDE GETTING STARTED

mailto:support%40percepio.com?subject=Questions%20about%20Tracealyzer
https://percepio.com/partners/#distributors
https://percepio.com/tracealyzer
https://percepio.com/devalert?utm_source=devalert&utm_medium=press-release&utm_campaign=2022
https://percepio.com?utm_source=home-page&utm_medium=press-release&utm_campaign=2022
https://percepio.com/tracealyzer
http://percepio.com/tracealyzer
https://percepio.com/tz/freertostrace
https://percepio.com/docs/FreeRTOS/manual
https://percepio.com/gettingstarted

