
Stop Guessing
See Inside RTOS Firmware with Visual Tracing

The debugging of RTOS-based systems can be dramatically simplified—
reducing debugging time from days or weeks to hours—with better 
insight into their real-time execution. This requires RTOS-level software 

tracing, where good visualization is key to make sense of the data.
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A real-time operating system (RTOS) is a fast, deterministic operating system that is typically 
small enough to be suitable for use in microcontrollers (MCUs), making RTOSes ideal for 
use in embedded and IoT applications. Developers are moving towards RTOSes because 
they can help reduce code complexity, guarantee hard timing deadlines, and facilitate reuse 
of software modules. The structure imposed by using an RTOS increases the application’s 
maintainability and makes adding features easier. This is all good for management because 
it can increase development efficiency, decrease time to market, and improve product 
reliability and customer satisfaction.

However, all these advantages do not come without complexities. Subtle coding choices 
can result in elusive errors or performance issues in the final product, that are not apparent 
in the source code. The system seems to operate as intended in the lab, but there can be 
countless execution scenarios that are impossible to fully cover by testing or code reviews. 
In the worst case, the system passes testing but crashes during customer use. To ensure 
reliable operation, all parts of the application code need to follow best practices in RTOS-
based design. This requires good insight into the system’s real-time behavior.

Trace visualization can be thought of as a slow-motion video 
of the application’s internals.

When such problems occur, debugging can be a nightmare since the circumstances that 
caused the problem are often not known in detail and thereby difficult to reproduce. 
Developers often find themselves guessing their way through this, trying one thing after 
another to get the application to run properly. But to be sure the problem is solved, 
developers need to understand the specific sequence of software events that caused 
the problem, including the interactions between the application and RTOS. Traditional 
debugging tools can’t offer this capability.

RTOS trace visualization, which can be thought of as a slow-motion video of the 
application’s internals, is a good way to be confident that an RTOS software runs as 
designed—and is the fastest way to detect and correct bugs.
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Challenges in RTOS-based design 
The main job of an RTOS is to provide multitasking, which allows for separation of software 
functionality into multiple “parallel” programs, known as tasks. An RTOS creates the illusion 
of parallel execution by rapidly switching the execution between the tasks. Unlike general-
purpose operating systems, an RTOS gives the developer full control over the multitasking 
and therefore enables deterministic real-time behavior. 

An RTOS takes control over program execution and brings a new level of abstraction in 
the form of these tasks. When using an RTOS, the control-flow of the program is no longer 
apparent from the source code, since the RTOS decides which task to execute at any given 
moment. This is a fundamental change, similar to the shift from assembly to C programming, 
as it allows for higher productivity using higher abstraction, but also means less control over 
the fine details. 

While an RTOS can reduce the complexity of the application source code, it 
does not reduce the inherent complexity of the application itself.

This double-edged sword can make it easier to design complex applications, but these 
applications may subsequently turn out to be difficult to validate and debug. While an RTOS 
can reduce the complexity of the application source code, it does not reduce the inherent 
complexity of the application itself. A set of seemingly simple RTOS tasks can result in 
surprisingly complex runtime behavior when executing together as a system. 

The developer needs to determine how the tasks are to interact and share data using the 
RTOS services. Moreover, the developer needs to decide important RTOS parameters such 
as task priorities (relative urgency) that can be far from obvious. Even if all your code is 
written according to best practices in RTOS-based design, there might be other parts of the 
system—in-house or third-party components—that run in the same RTOS environment but 
that may not follow the same principles. 

The fundamental problem that makes RTOS-based design difficult is that RTOS 
tasks are not isolated entities but have dependencies that may delay or stall the 
task execution in unexpected ways. This may reduce performance, make the system 
unresponsive or unstable, or even cause intermittent data loss. 

There is at least one kind of dependency between the tasks: they share the processor 
time. Higher-priority tasks can wake up and take over the execution at almost any point, 
until all active higher-priority tasks have completed. Moreover, tasks often use shared 
software resources (e.g., global data and peripheral interface drivers) that require blocking 
synchronization calls to prevent access conflicts. Such task dependencies may depend on 
many factors, including variations in input values, input timing, and task execution times.

Such issues are not visible in the code and often not detectable in unit tests, but show up 
in the integrated product, either during full system testing or in customer use. This makes 
them difficult to reproduce for debugging, unless the developer knows the exact sequence 
of software events that led up to the problem.

Finding Bugs in RTOS-based Systems 
When the embedded industry moved from assembly to C programming, debugging tools 
quickly followed with source-level debugging, which made the C code perspective the 
normal debugging view. Unfortunately, the tools generally haven’t evolved beyond this 
level. Some of them have been enhanced with features that allow developers to inspect 
the state of RTOS objects such as tasks and semaphores, but that is not enough. An RTOS 
debugging tool must understand the concept of time, be able to correlate events, and allow 
developers to observe the real-time behavior of an application.

This calls for RTOS tracing, which means that software events are recorded in runtime, in the 
RTOS kernel and optionally also in the application code, intended for host-side analysis.
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Good visualization is key to understanding RTOS traces. Many embedded systems exhibit 
a cyclic behavior, which means that a trace mostly consists of repetitions of the “normal” 
pattern. The interesting part is usually the anomalies, but they can be very difficult to spot in 
a raw data stream. A graphical presentation makes any anomalies stand out.

An RTOS debugging tool must understand the concept of time, be able to 
correlate events, and allow developers to observe the real-time behavior 

of an application.

Moreover, a debugging tool that understands RTOS events and data structures can extract 
much more information from a trace than just the basic execution flow. For instance, it is 
possible to construct a dependency graph showing the interaction between tasks, interrupt 
service routines, and RTOS objects such as semaphores and message queues.

Seeing Is Understanding
The primary job for a software tracing tool is to capture events in the target system, from 
scheduling and RTOS calls to timer ticks and application-specific log messages. But a quick 
look at a typical event log (below) makes it clear although this might be useful, textual 
presentation does not scale to the large amounts of data resulting from software tracing. 
This example only represents about 2 milliseconds of execution. An RTOS trace spanning 
over a few minutes can contain millions of events.

Finding a bug in a large text log is like looking for a needle in a haystack, without knowing 
what the needle looks like. To get to the next level—to understand what is intended 
behavior and what is not—the developer needs suitable tools for data visualization.

Finding a bug in a large text log is like looking for a needle in a haystack, 
without knowing what the needle looks like.

A better way to present large amounts of RTOS trace data is to use a graphical Gantt-style 
trace view, which allows for displaying the trace data on an interactive timeline. This allows 
the developer to zoom out and overview a vast amount of trace data, identify abnormal 
patterns, and zoom in to see the details. A graphical trace view may include not only the 
RTOS task execution but may also include API calls, application log messages, and other 
events, as shown in the example on the next page.

An event log can be informative but it does not scale to large amounts of trace data.
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One common issue for embedded system developers is that target systems tend to be 
constrained in terms of both CPU power and memory. That is why a diagram like this CPU 
load graph (below) can be helpful: it displays the amount of processor time used by each 
task and interrupt service routine. Armed with this information, a developer can quickly see 
any hot spots where the load approaches 100 percent over longer periods (where tasks are 
likely to be delayed) as well as the amount of remaining CPU time available for adding more 
features without upgrading the hardware.

The trace view in Percepio Tracealyzer, showing a vertical timeline of the trace data.

A CPU load graph from Percepio Tracealyzer shows processor usage per task over 
time, clearly showing where a specific task is consuming much higher CPU resources 
than others.
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To connect back to the debugging aspect of tracing, a runaway task in an application that 
consumes more CPU than intended will be clearly visible in a CPU load graph. Tasks using 
inefficient “busy waiting” will also stand out. This wastes CPU time that otherwise would be 
available to other tasks and is a common violation of best practices in RTOS-based design.

By tracing API calls, you actually capture dependencies between tasks that a tool can 
visualize in a dependency graph, like the one below. Such a visual summary of the 
application design provides confidence that the application code works as intended and can 
also reveal bugs related to incorrect or missing API calls, i.e., issues that may cause stability 
problems.

A good tracing tool should also allow the developer to log custom application-specific 
data in the trace stream. These events can be used for almost anything, but one common 
usage is to log important variable values and state transitions from the application code.

This communication flow or dependency graph is a good starting point for many 
debugging sessions as it shows a bird’s-eye view of the application architecture, and 
then allows the developer to drill down to any object in the graph by double-clicking it.

Percepio Tracealyzer supports application data logging and plotting over time.
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Example: Priority Inversion on Mars
A highly visible and expensive example of RTOS debugging challenges was illustrated 
during NASA’s Pathfinder mission that landed a rover on Mars in 1997. During the mission, 
the spacecraft experienced total system resets causing lost data. After much trouble, NASA 
found the cause to be a classic RTOS problem known as priority inversion.

Priority inversion may occur when a high-priority task (red Task H in the illustration below) 
tries to access a shared resource such as a communications interface, currently in use by 
a lower priority task (green Task L). Normally, Task H would become blocked for a brief 
duration until Task L returns the shared resource. A priority inversion occurs if a medium-
priority task (yellow Task M) happens to pre-empt Task L at this point, delaying the high-
priority task as illustrated below. In the NASA Pathfinder case, this caused repeated timeout 
errors leading to system resets, data loss and nearly a mission failure.

Tracing allows developers to detect and prevent these types of issues. Tracing entails 
recording software behavior during runtime, allowing for later analysis of collected 
trace data. Tracing is most often a development bench activity, but tracing can also be 
enabled for production use, continuously active to record behaviors and catch errors 
post-deployment. Production tracing can be an effective technique for detecting rarely 
manifested errors that are difficult to reproduce in a debugger. These can include situations 
where the system responds more slowly than expected, gives incorrect or suboptimal 
output, freezes up, or crashes.

Hardware vs. Software Tracing
Tracing can be performed either in hardware (in the processor) or in software. Hardware-
based tracing generates a detailed instruction-level execution history, while software-based 
tracing focuses on selected software events, typically in the operating system and important 
application-level interfaces. Hardware-generated trace provides details regarding control-
flow and does not impact the execution of the traced system, but it does require special 
equipment and a trace-enabled hardware platform.

Software-generated trace does not require any special hardware and can even be deployed 
in shipped products similar to a black-box flight recorder used in aviation. Moreover, 
software trace allows for storing any application data at these events, including local 
variables and function parameters, while hardware trace is often limited to only the control-
flow and possibly global data accesses, assuming a high-speed trace port. Software tracing 
does induce some CPU overhead, but this is typically not noticeable (a few percent). 

A priority inversion as shown in Percepio Tracealyzer.
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Software tracing relies on 
target-system RAM for 
temporary buffering of the 
trace data, but the RAM buffers 
are usually configurable to 
allow for balancing RAM usage 
vs. buffer sizes.

Tracing is especially important 
for systems that integrate a 
real-time operating system. A 
central feature of RTOSes is 
multitasking—the ability to run 
multiple programs (tasks) on a 
single processor core by rapidly 
switching among execution 
contexts. Multitasking, 
however, makes software 
behavior more complex, and 
affords the developer less 
control over run-time behavior 
as execution is pre-empted by 
the RTOS.

Stop Guessing
The debugging of RTOS-based systems can be dramatically simplified—reducing 
debugging time from days or weeks to hours—with better insight into their real-time 
execution. This requires RTOS-level software tracing, where good visualization is key 
to make sense of the data. While several tools can provide basic RTOS tracing, more 
sophisticated visualization makes it far easier to understand the trace, spot important issues, 
and verify the solutions. 

Percepio Tracealyzer is the best tool for software tracing, enabling sharper 
insight, higher quality, and faster development. It is available for leading RTOSes 
and Linux systems and supports most 32-bit and 64-bit processors out-of-the-
box. The Tracealyzer application runs on Windows and Linux hosts.

A free, fully functional evaluation of Tracealyzer can be downloaded from  
https://percepio.com/. The installer includes a pre-recorded demo trace so 
you can quickly start exploring all 30+ interconnected views. 

About Percepio
Percepio is the developer of a highly visual runtime diagnostics tool for embedded and Linux-
based software, Tracealyzer, and of the award-winning DevAlert, a cloud-based service for error 
reporting in deployed IoT devices with Tracealyzer diagnostics. Percepio collaborates with several 
leading vendors of operating systems for embedded software and is a member of the Amazon 
Web Services Partner Network (Advanced Technology Partner).

Hardware Trace Software Trace

• Generated by CPU features
• Exact instruction sequence
• Non-intrusive
• Often only control-flow trace

• General data trace requires 
special chips and boards due 
to high data rates

• For lab use only
• Examples:

• Lauterbach TRACE32®
• iSystem Bluebox

• Generated by software
• Higher abstraction level

• RTOS task execution 
• API calls
• Application-specific logging

• Uses target CPU and RAM
• Any software event and data
• Advanced analysis possible
• No extra hardware needed

• For lab use
• As crash recorder in field use

• Examples:
• Wind River System Viewer
• Percepio Tracealyzer

“The many system views of Tracealyzer from 
Percepio make it easy to quickly find solutions 
that we have not seen using System Viewer. The 
visualization has several advantages over the 
System Viewer and makes it easier to understand 
system behavior.”
— Johan Fredriksson, Software Architect, SAAB AB
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