
RTOS 101
Understand your real-time applications
with the help of Percepio Tracealyzer

2	 A White Paper from Percepio

The use of a Real-Time Operating
System (RTOS) is increasingly common
in embedded software designs, as an
RTOS makes it easy to divide your code
into smaller blocks, tasks, which exe-
cute seemingly in parallel and indepen-
dent of each other. An RTOS provides
multi-tasking, in a reliable and maintain-
able manner, which makes it easier to
design applications with multiple con-
current functions such as control, com-
munication and HMI.

The overhead of an RTOS is negligible
on modern 32-bit processors and is of-
ten more than compensated for by more

efficient designs enabled by multi-task-
ing.﻿

Priority decides scheduling
An RTOS typically implements pre-
emptive multi-tasking using a periodic
interrupt routine (the “tick” interrupt)
that switches the running task when re-
quired. The decision of what task to ex-
ecute is known as task scheduling and
most RTOS use fixed-priority schedul-
ing (FPS), where the developers assign
each task a static priority level to indi-
cate their relative urgency. The RTOS
scheduler always chooses the task with
highest priority from the tasks current-

Figure 1: Tracealyzer showing RTOS task scheduling and calls to RTOS services.

RTOS 101
Tasks, Priorities and Analysis

	 A White Paper from Percepio	 3

ly ready to execute. This is a quite sim-
ple and elegant solution that allows the
RTOS scheduler to be very small, highly
optimized and thoroughly validated.

It is however important to assign suit-
able task priorities, otherwise the system
performance will suffer or the system
might even become
unresponsive. This is
because high priori-
ty tasks may prevent
lower priority tasks
from executing if they
consume too much
processor time.

Analyzing task prior-
ities and runtime be-
havior of RTOS-based
applications requires
recording and visu-
alization of the task
scheduling. For this
purpose Percepio of-
fers the Tracealyzer
tools with over 25 in-
teractive views that
make the recorded
traces easier to com-
prehend and analyze.

Task scheduling in Tracealyzer
Figure 1 (left) shows the main view of
Tracealyzer, a vertical timeline focused
on the execution of tasks and interrupt
handlers (A) annotated with text labels
showing events (B) including RTOS API
calls and custom “user events” (C). The
“Selection Details” panel (D) shows
properties of the highlighted task and
the “View Filter” (E) allows for filtering
of the display. Double-clicking on task
fragments or event labels opens other
related views showing related points in
the trace, e.g., a chronological list of all
executions of a selected task.

The response time of a task, i.e., the
time from activation until completion, is
affected not just by the actual processor
time used by the task itself (execution

time), but also by higher priority tasks
and interrupts that preempt the task, as
illustrated in Figure 1. So if the response
time is too long, optimizing the code of
the problematic task might be a waste
of time, unless you know what actually
causes the long response time.

Execution time versus response time
With Tracealyzer you get many perspec-
tives of the runtime world, including
plots of task execution times and re-
sponse times like in Figure 2 above. We
can see that execution times are pretty
steady for both tasks, but sometimes
the response time of “SensorZ” is much
higher. By clicking on such a data point,
you open the corresponding interval in
the main trace view (Figure 1) and see
the cause. All views in Tracealyzer are in-
terconnected in similar ways.

Figure 2: Execution time and response time for each execution of two
tasks.

4	 A White Paper from Percepio

An RTOS makes it easy to divide your
code into smaller blocks, tasks, which
execute seemingly in parallel and inde-
pendent of each other, as described in
the previous article in this series.

Having fully independent tasks is rare-
ly possible in practice. In many cases,
tasks need to be activated on a particu-
lar event, e.g., from an interrupt service
routine or from another task request-
ing a service. In such cases, tasks often
need to receive related input, i.e., pa-
rameters. Moreover, tasks often need to
share hardware resources such as com-
munication interfaces which can only be
used by one task at a time, i.e. mutual
exclusion, a type of synchronization.

Thread-safe is tricky
Inexperienced developers may try to
use global variables for such purposes,
but implementing thread-safe commu-
nication is tricky and a home-cooked
solution may fail if a task-switch strikes
at a critical point.

For instance, consider this situation:

1: while (COM1_busy); // if busy,
wait until free

2: COM1_busy = 1;
3: SendBytes(COM1, data);
4: COM1_busy = 0;

The initial loop (line 1) may seem to give
exclusive access to the COM1 interface
(line 3), but if using an RTOS this is of-
ten not a safe solution. It probably works
most of the time, perhaps often enough
to pass all testing, but if an interrupt
strikes after the initial loop on line 1 but
before the assignment at line 2 and this
results in a task-switch, a second task
could get into the critical section before
the first task is finished.

Implementing a thread-safe critical sec-
tion requires either disabling interrupts
or using special instructions for atomic
“test-and-set”. Considering this, it is typ-
ically easier (and safer!) to use the RTOS
services intended for this purpose. Most

RTOS 101
Semaphores and Queues

Semaphore: a signal between
tasks/interrupts that does not
carry any additional data. The
meaning of the signal is implied
by the semaphore object, so you
need one semaphore for each
purpose. The most common type
of semaphore is a binary sema-
phore, that triggers activation of
a task. The typical design pattern
is that a task contains a main loop
with an RTOS call to “take” the
semaphore. If the semaphore is
not yet signaled, the RTOS blocks
the task from executing further
until some task or interrupt rou-
tine “gives” the semaphore, i.e.,
signals it.

Mutex: a binary semaphore for
mutual exclusion between tasks,
to protect a critical section. In-
ternally it works much the same
way as a binary semaphore, but
it is used in a different way. It is

“taken” before the critical section
and “given” right after, i.e., in
the same task. A mutex typically
stores the current “owner” task
and may boost its scheduling
priority to avoid a problem called
“priority inversion”, discussed
below.

Counting Semaphore: a sema-
phore that contains a counter
with an upper bound. This al-
lows for keeping track of limited
shared resources. Whenever a
resource is to be allocated, an
attempt to “take” the semaphore
is made and the counter is incre-
mented if below the specified
upper bound, otherwise the
attempted allocation blocks the
task (possibly with a timeout) or
fails directly, depending on the
parameters to the RTOS sema-
phore service. When the resource
is to be released, a “give” ope

ration is made which decrements
the counter.

Queue: a FIFO buffer that allows
for passing arbitrary messages to
tasks. Typically, each queue has
just one specific receiver task and
one or several sender tasks.

Queues are often used as input
for server-style tasks that provide
multiple services/commands. A
common design pattern in that
case is to have common data
structure for such messages
consisting of a command code
and parameters, and use a switch
statement in the receiver task
to handle the different message
codes. If using a union structure
for the parameters, or even just a
void pointer, the parameters can
be defined separately for each
command code.

Some common synchronization objects

	 A White Paper from Percepio	 5

RTOSes provides many types of mecha-
nisms for safe communication and syn-
chronization in between tasks and be-
tween interrupt routines and tasks.

Priority inversion
Priority Inversion is what caused NASA
problems on the Mars Pathfinder mis-
sion. This means that a higher priority
task is accidentally delayed by a lower
priority task, which normally is not possi-
ble in RTOSs using Fixed Priority Sched-
uling. This may however occur, e.g., if
the high-priority task (“Task H”) needs to
take a mutex that is currently held by a
lower priority task (“Task L”). This blocks

Task H until the mutex is available, and
is often not a problem in itself since a
mutex is typically only held for brief du-
rations during a critical section.

Inheritance
However, as illustrated in
Figure 1 (left), the blocking
may become a lot longer if
an unrelated medium-pri-
ority task (“Task M”) comes
in and preempts Task L,
thereby delaying the re-
lease of the mutex that
Task H is waiting for. This
phenomenon is called Pri-
ority Inversion.

Most RTOSes provide mutexes with
“Priority Inheritance” (or other similar
protocols) which raises the scheduling
priority of the owner task if another,
higher priority tasks becomes blocked
by the mutex, which avoids interference
from medium-priority tasks. Priority In-
version can also occur with queues and
other similar primitives, as described in
Customer Case: The mysterious watch-
dog reset (see page 10).

Task H

Task M

Task L
Takes mutex

Tries to take mutex, blocked

Gives mutex
Priority Inversion!

Takes mutex

Figure 2. Tracealyzer displays most RTOS calls, including operations on
semaphores, mutexes and queues, in the main timeline.

Figure 1. In principle, a high-priority task (‘H’ above) should
never be blocked by lower-priority tasks. In practice, certain
design decisions can result in this happening anyway, a
condition known as Priority Inversion.

6	 A White Paper from Percepio

Percepio Tracealyzer allows you to see
most RTOS calls made by the applica-
tion, including operations on queues,
semaphores and mutexes, in the vertical

timeline of the main trace view, in par-
allel with the task scheduling, interrupts,
and logged application events – see
Figure 2 on the previous page.

Revealing history
By clicking on any semaphore, queue or
mutex event in the main trace view, you
open up the Kernel Object History view

for the selected object, as illustrated
above, showing a separate timeline with
all operations and states of this specific
object. You can double-click in this view
to find the corresponding event in the
main trace view.

For queue objects, you also get a visu-
al display of the number of messages in
the buffer at any point, and you can even
track messages from send to receive or
vice versa. For mutex objects you see
the name of the current owning task.

Tracealyzer also provides an overview
of the interactions between tasks and
interrupts via kernel objects such as
queues, semaphores and mutexes.
This gives a high-level illustration of
the runtime architecture based on the
trace, and you can even generate this
for specified intervals in the trace. An
example is shown below. Rectangles
indicates tasks and interrupts, while el-
lipses indicate queues or semaphores.
Mutexes are shown as hexagons. Since
sometimes binary semaphores are used
as mutexes, the classification of Mutex-
es are made based on their usage pat-
tern, so semaphore objects may also be
displayed with hexagons if they are used
like a mutex, i.e., taken and given by the
same task.

Figure 3. Double-clicking an event from the main trace
view brings up the History view for the corresponding
object.

Figure 4. The
Communications Flow

view can be a good place
to start your debugging

from, as it shows how
messages are passed

around within the
application.

Remember:
implementing thread-safe
communication is tricky.

	 A White Paper from Percepio	 7

When developing firmware using a
Real-Time Operating System (RTOS),
how do you measure the software per-
formance? One important aspect of
performance analysis is response time,
the time from point A to point B in the
code, e.g., from when a task is activated
until it is completed. This can be mea-
sured in many ways, e.g., by toggling
an I/O pin and measuring with a logic
analyzer, or by adding some extra code
that measures the number of clock cy-
cles between the two points. But a basic
measurement like this only measures the
total amount of processor time between
these points, without any information
about contributing factors, such as inter-
rupts routines or other tasks that inter-
fere due to preemptive scheduling (see
Tasks, Priorities and Analysis, page 2).

Another important performance aspect
of performance analysis is execution
time, the actual processor time used by
a particular piece of code. You might
use solutions that samples the program
counter and provides a high level over-
view of those using the most processor
time. This is supported by several com-
mon IDEs and most ARM-based MCUs
provide hardware support for this pur-
pose. This is however an average mea-
surement of the typical distribution and
is inaccurate for less frequent functions

or tasks. Moreover, this does not reveal
sporadic cases of unusually long execu-
tions that might cause problems such as
timeouts.

Tracing with RTOS knowledge
To get an exact picture of the RTOS be-
havior you need a solution for RTOS-
aware tracing. Tools for this purpose
have been around for many years, but
only for certain operating systems and
each tool typically only support a par-
ticular operating system. They typically
display a horizontal Gantt chart showing
task execution over time. This is how
ever not ideal for RTOS traces as it is
hard to show other events in parallel,
such as RTOS API calls.

Tracealyzer is available for several lead-
ing operating systems and provides a
sophisticated visualization that makes it
easier to comprehend the traces.

The main view of Tracealyzer (Figure 1,
above) uses a vertical timeline, that al-
lows for showing not only RTOS sched-
uling and interrupts, but also other
events such as RTOS calls or custom
User Events, using horizontal text la-
bels. These labels “float” and spread
out evenly to avoid overlaps. The rec
tangles in the scheduling trace corre-
spond to intervals of uninterrupted ex-

RTOS 101
Performance Analysis with Tracealyzer

Figure 1. Actors, Instances and Fragments in Tracealyzer.

8	 A White Paper from Percepio

ecution. These are called “fragments”
in Tracealyzer. The term “Actor” is used
to denote all execution contexts in the
traced system, such as tasks and inter-
rupt handlers. The task scheduling can
be rendered in different ways, or “View
Modes”, with associated buttons found
under the Zoom buttons. In this mode,
the fragments are ordered in multiple
columns, one for each Actor.

One actor, many instances
Tracealyzer has a concept of “instances”
not found in other RTOS tracing tools,
meaning a particular execution of an Ac-
tor, i.e., from when a “job” is triggered
until it is finished. The instance concept
is quite central in Tracealyzer, since in-
stances are used both in the trace visu-
alization and for providing timing statis-
tics. When clicking on the actor fragment
in the Tracealyzer main view, the entire
Actor Instance is highlighted with a blue
rectangle as depicted in Figure 1.

Moreover, performance metrics such as
execution time and response time are
calculated for each instance and can be
visualized as detailed plots showing the
variations over time (Figure 2 above)
and as histograms showing the distri-
butions. The latter is shown in Figure 3
(right) where we can see that the highest

response time of “Control Task” is 3255
µs in this trace, while the highest execu-
tion time is just 1087 µs, meaning that
most of the response time is due to in-
terference from other tasks or interrupts.

It’s all connected
All views in Tracealyzer are interconnect-
ed, so by clicking on the plotted data
points or the histogram bars, you find
the corresponding locations in the main
trace view and can see the detailed
RTOS behavior behind the statistics.

Figure 2. Plot showing variations in execution time (above) and response time
(below), over time.

0

50

100

150

200

250

300

350

40 3255 µs

45

302

23 22
1

Task Control –�Response Time

0

50

100

150

200

250

300

350

40 1087 µs

45
22 22

303

1

Task Control –�Execution Time

Figure 3. Distribution of execution times and
response times (in µs) for the task instances.

	 A White Paper from Percepio	 9

Great, but how is the stream of task
scheduling events grouped into task in-
stances? This is fairly obvious for cyclic
RTOS tasks, where an instance corre-
sponds to an iteration of the main loop,
delimited by a blocking RTOS call, e.g.,
a “QueueRecieve” or a “DelayUntil”
somewhere in the loop. But a task might
perform multiple such calls, so how does
Tracealyzer know where to end the cur-
rent instance and begin a new instance?

For this purpose, Tracealyzer has a con-
cept of “instance finish events” (IFEs)
that are defined in two ways. Users don’t
need to bother about this in most cas-
es, as there is a set of standard rules that

specify what RTOS calls that normally
should be counted as IFEs, such as De-
lay calls and QueueRecieve calls. This
requires no extra configuration and is
usually correct. However, for cases these
implicit rules are unsuitable, you may
generate explicit events (IFEs) that marks
the instance as finished, this by calling
a certain function in our recorder library.
An example of this is shown in Figure 4
(above), where the dark green control
task is divided into multiple instances de-
spite no task-switches occurring at these
points. This way you can manually de-
cide how to group events into instances,
and thereby control the interpretation of
the timing statistics.

Figure 4. Instance Finish Events (IFE) allows you to define your own custom intervals.

10	 A White Paper from Percepio

We collect examples of how Tracealyzer
has been of useful to our customers and
have recreated similar issues to illustrate
the benefits of our Tracealyzer tools for
embedded software developers.

In this case, a customer had an issue
with a randomly occurring reset. By plac-
ing a breakpoint in the reset exception
handler, they figured out that it was the
watchdog timer that had expired. The
watchdog timer was supposed to be re-
set in a high priority task that executed
periodically.

The ability to insert custom User Events
comes handy in this case. They are sim-
ilar to a classic “printf()” call and events
have here been added when the watch-
dog timer was reset and when it expired.
User events also support data argu-
ments, and this has been used to log the
timer value (just before resetting it) to see
the watchdog “margin”, i.e., remaining
time. The result can be seen above, in
the yel-
low text
labels.

We can
see that
the Sam-

plerTask is running,
but it does not
clear the watchdog
timer in the last
execution of the
task, which resets
the system after a
while (“Watchdog
reset!”). So why
didn’t SamplerTask
reset the watchdog
timer? Let’s display
Kernel Service calls
to see what the
task was doing.

The last event of
SamplerTask is a call
to xQueueSend, a
kernel function that
puts a message in
a message queue.
Note that the label
is red, meaning that
the xQueueSend
call blocked the

task, which caused a context-switch to
ServerTask before the watchdog timer
had been reset, which caused it to ex-
pire and reset the system.

Why the blocking?
So why was xQueueSend blocking the
task? By double-clicking on this event
label, we open the Object History View,
showing all operations on this particular
queue, “ControlQueue”, as illustrated
on the next page.

The rightmost column shows the buff-
ered messages. We can see that the
message queue already contains five
messages and probably is full, hence
the blocking. But the ControlTask is
supposed to read the queue and make
room, why hasn’t this worked as expect-
ed?

To investigate this, we look at how the
watchdog margin varies over time. We
have this information in the user event

Customer Case

Mysterious Watchdog Reset

Figure 2. SamplerTask blocks on a send-to-queue operation.

Figure 1. In Tracealyzer, a User Event (the yellow labels) are used to log and
display user data, somewhat similar to classic printf() statements.

	 A White Paper from Percepio	 11

logging, and by using the User Event
Signal Plot we can plot the watchdog
margin over time. Adding a CPU Load
Graph on the same timeline, we can see
how task execution affects the watch-
dog margin, as shown below (left).

In the CPU Load Graph, we see that the
ServerTask is executing a lot in the sec-
ond half of the trace, and this seems to
impact the watchdog margin. Server-
Task (bright green) has higher priority
than ControlTask (dark green), so when
it is executing a lot in the end of the
trace, we see that ControlTask is getting
less CPU time. This is an intrinsic effect
of Fixed Priority Scheduling, which is
used by most RTOSes. Most likely, this
could cause the full message queue,
since ControlTask might not be able to
read messages fast enough when the
higher priority ServerTask is using most

of the CPU time. This is an example of a
Priority Inversion problem, as the Sam-
plerTask is blocked by an unrelated task
of lower priority. A solution could be to
change the scheduling priorities, so that
ControlTask gets higher priority than
ServerTask. Let’s try that and see how it
would look.

Switching priorities solves problem
The right screenshot below shows the
result of switching the task scheduling
priorities between ServerTask and Con-
trolTask. The system now shows a much
more stable behavior. The CPU load of
SamplerTask (red here) is quite steady
around 20%, indicating a stable periodic
behavior, and the watchdog margin is a
perfect line, always at 10 ms. It does not
expire anymore – problem solved!

Figure 4. In the original system configuration (left) ControlTask could not empty the message
queue fast enough, finally causing the watchdog timer to expire. After adjusting priorities
everything works as intended (right).

Figure 3. The Object History
view can tell us a lot about
an RTOS object. In this case,
a message queue, one of
the things you can see is the
number of messages in the
queue.

®

Percepio AB, Västerås, Sweden
https://percepio.com

Download
Tracealyzer 4

https://percepio.com/download

Free evaluation license available

	Blank Page
	Blank Page

