
RTOS 101
Understand your real-time applications
with the help of Percepio Tracealyzer
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The use of a Real-Time Operating 
System (RTOS) is increasingly common 
in embedded software designs, as an 
RTOS makes it easy to divide your code 
into smaller blocks, tasks, which exe-
cute seemingly in parallel and indepen-
dent of each other. An RTOS provides 
multi-tasking, in a reliable and maintain-
able manner, which makes it easier to 
design applications with multiple con-
current functions such as control, com-
munication and HMI.

The overhead of an RTOS is negligible 
on modern 32-bit processors and is of-
ten more than compensated for by more 

efficient designs enabled by multi-task-
ing.﻿

Priority decides scheduling
An RTOS typically implements pre-
emptive multi-tasking using a periodic 
interrupt routine (the “tick” interrupt) 
that switches the running task when re-
quired. The decision of what task to ex-
ecute is known as task scheduling and 
most RTOS use fixed-priority schedul-
ing (FPS), where the developers assign 
each task a static priority level to indi-
cate their relative urgency. The RTOS 
scheduler always chooses the task with 
highest priority from the tasks current-

Figure 1: Tracealyzer showing RTOS task scheduling and calls to RTOS services.
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ly ready to execute. This is a quite sim-
ple and elegant solution that allows the 
RTOS scheduler to be very small, highly 
optimized and thoroughly validated.

It is however important to assign suit-
able task priorities, otherwise the system 
performance will suffer or the system 
might even become 
unresponsive. This is 
because high priori-
ty tasks may prevent 
lower priority tasks 
from executing if they 
consume too much 
processor time.

Analyzing task prior-
ities and runtime be-
havior of RTOS-based 
applications requires 
recording and visu-
alization of the task 
scheduling. For this 
purpose Percepio of-
fers the Tracealyzer 
tools with over 25 in-
teractive views that 
make the recorded 
traces easier to com-
prehend and analyze.

Task scheduling in Tracealyzer
Figure 1 (left) shows the main view of 
Tracealyzer, a vertical timeline focused 
on the execution of tasks and interrupt 
handlers (A) annotated with text labels 
showing events (B) including RTOS API 
calls and custom “user events” (C). The 
“Selection Details” panel (D) shows 
properties of the highlighted task and 
the “View Filter” (E) allows for filtering 
of the display. Double-clicking on task 
fragments or event labels opens other 
related views showing related points in 
the trace, e.g., a chronological list of all 
executions of a selected task.

The response time of a task, i.e., the 
time from activation until completion, is 
affected not just by the actual processor 
time used by the task itself (execution 

time), but also by higher priority tasks 
and interrupts that preempt the task, as 
illustrated in Figure 1. So if the response 
time is too long, optimizing the code of 
the problematic task might be a waste 
of time, unless you know what actually 
causes the long response time.

Execution time versus response time
With Tracealyzer you get many perspec-
tives of the runtime world, including 
plots of task execution times and re-
sponse times like in Figure 2 above. We 
can see that execution times are pretty 
steady for both tasks, but sometimes 
the response time of “SensorZ” is much 
higher. By clicking on such a data point, 
you open the corresponding interval in 
the main trace view (Figure 1) and see 
the cause. All views in Tracealyzer are in-
terconnected in similar ways.

Figure 2: Execution time and response time for each execution of two 
tasks.
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An RTOS makes it easy to divide your 
code into smaller blocks, tasks, which 
execute seemingly in parallel and inde-
pendent of each other, as described in 
the previous article in this series.

Having fully independent tasks is rare-
ly possible in practice. In many cases, 
tasks need to be activated on a particu-
lar event, e.g., from an interrupt service 
routine or from another task request-
ing a service. In such cases, tasks often 
need to receive related input, i.e., pa-
rameters. Moreover, tasks often need to 
share hardware resources such as com-
munication interfaces which can only be 
used by one task at a time, i.e. mutual 
exclusion, a type of synchronization.

Thread-safe is tricky
Inexperienced developers may try to 
use global variables for such purposes, 
but implementing thread-safe commu-
nication is tricky and a home-cooked 
solution may fail if a task-switch strikes 
at a critical point. 

For instance, consider this situation:

1: while (COM1_busy); // if busy, 
wait until free

2: COM1_busy = 1;
3: SendBytes(COM1, data);
4: COM1_busy = 0;

The initial loop (line 1) may seem to give 
exclusive access to the COM1 interface 
(line 3), but if using an RTOS this is of-
ten not a safe solution. It probably works 
most of the time, perhaps often enough 
to pass all testing, but if an interrupt 
strikes after the initial loop on line 1 but 
before the assignment at line 2 and this 
results in a task-switch, a second task 
could get into the critical section before 
the first task is finished.

Implementing a thread-safe critical sec-
tion requires either disabling interrupts 
or using special instructions for atomic 
“test-and-set”. Considering this, it is typ-
ically easier (and safer!) to use the RTOS 
services intended for this purpose. Most 

RTOS 101
Semaphores and Queues

Semaphore: a signal between 
tasks/interrupts that does not 
carry any additional data. The 
meaning of the signal is implied 
by the semaphore object, so you 
need one semaphore for each 
purpose. The most common type 
of semaphore is a binary sema-
phore, that triggers activation of 
a task. The typical design pattern 
is that a task contains a main loop 
with an RTOS call to “take” the 
semaphore. If the semaphore is 
not yet signaled, the RTOS blocks 
the task from executing further 
until some task or interrupt rou-
tine “gives” the semaphore, i.e., 
signals it. 

Mutex: a binary semaphore for 
mutual exclusion between tasks, 
to protect a critical section. In-
ternally it works much the same 
way as a binary semaphore, but 
it is used in a different way. It is 

“taken” before the critical section 
and “given” right after, i.e., in 
the same task. A mutex typically 
stores the current “owner” task 
and may boost its scheduling 
priority to avoid a problem called 
“priority inversion”, discussed 
below. 

Counting Semaphore: a sema-
phore that contains a counter 
with an upper bound. This al-
lows for keeping track of limited 
shared resources. Whenever a 
resource is to be allocated, an 
attempt to “take” the semaphore 
is made and the counter is incre-
mented if below the specified 
upper bound, otherwise the 
attempted allocation blocks the 
task (possibly with a timeout) or 
fails directly, depending on the 
parameters to the RTOS sema-
phore service. When the resource 
is to be released, a “give” ope

ration is made which decrements 
the counter.
 
Queue: a FIFO buffer that allows 
for passing arbitrary messages to 
tasks. Typically, each queue has 
just one specific receiver task and 
one or several sender tasks.

Queues are often used as input 
for server-style tasks that provide 
multiple services/commands. A 
common design pattern in that 
case is to have common data 
structure for such messages 
consisting of a command code 
and parameters, and use a switch 
statement in the receiver task 
to handle the different message 
codes. If using a union structure 
for the parameters, or even just a 
void pointer, the parameters can 
be defined separately for each 
command code.

Some common synchronization objects
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RTOSes provides many types of mecha-
nisms for safe communication and syn-
chronization in between tasks and be-
tween interrupt routines and tasks.

Priority inversion
Priority Inversion is what caused NASA 
problems on the Mars Pathfinder mis-
sion. This means that a higher priority 
task is accidentally delayed by a lower 
priority task, which normally is not possi-
ble in RTOSs using Fixed Priority Sched-
uling. This may however occur, e.g., if 
the high-priority task (“Task H”) needs to 
take a mutex that is currently held by a 
lower priority task (“Task L”). This blocks 

Task H until the mutex is available, and 
is often not a problem in itself since a 
mutex is typically only held for brief du-
rations during a critical section.

Inheritance
However, as illustrated in 
Figure 1 (left), the blocking 
may become a lot longer if 
an unrelated medium-pri-
ority task (“Task M”) comes 
in and preempts Task L, 
thereby delaying the re-
lease of the mutex that 
Task H is waiting for. This 
phenomenon is called Pri-
ority Inversion.

Most RTOSes provide mutexes with 
“Priority Inheritance” (or other similar 
protocols) which raises the scheduling 
priority of the owner task if another, 
higher priority tasks becomes blocked 
by the mutex, which avoids interference 
from medium-priority tasks. Priority In-
version can also occur with queues and 
other similar primitives, as described in 
Customer Case: The mysterious watch-
dog reset (see page  10).

Task H

Task M

Task L
Takes mutex

Tries to take mutex, blocked

Gives mutex
Priority Inversion!

Takes mutex

Figure 2. Tracealyzer displays most RTOS calls, including operations on 
semaphores, mutexes and queues, in the main timeline.

Figure 1. In principle, a high-priority task (‘H’ above) should 
never be blocked by lower-priority tasks. In practice, certain 
design decisions can result in this happening anyway, a 
condition known as Priority Inversion. 
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Percepio Tracealyzer allows you to see 
most RTOS calls made by the applica-
tion, including operations on queues, 
semaphores and mutexes, in the vertical 

timeline of the main trace view, in par-
allel with the task scheduling, interrupts, 
and logged application events – see 
Figure 2 on the previous page.

Revealing history
By clicking on any semaphore, queue or 
mutex event in the main trace view, you 
open up the Kernel Object History view 

for the selected object, as illustrated 
above, showing a separate timeline with 
all operations and states of this specific 
object. You can double-click in this view 
to find the corresponding event in the 
main trace view.

For queue objects, you also get a visu-
al display of the number of messages in 
the buffer at any point, and you can even 
track messages from send to receive or 
vice versa. For mutex objects you see 
the name of the current owning task.

Tracealyzer also provides an overview 
of the interactions between tasks and 
interrupts via kernel objects such as 
queues, semaphores and mutexes. 
This gives a high-level illustration of 
the runtime architecture based on the 
trace, and you can even generate this 
for specified intervals in the trace. An 
example is shown below. Rectangles 
indicates tasks and interrupts, while el-
lipses indicate queues or semaphores. 
Mutexes are shown as hexagons. Since 
sometimes binary semaphores are used 
as mutexes, the classification of Mutex-
es are made based on their usage pat-
tern, so semaphore objects may also be 
displayed with hexagons if they are used 
like a mutex, i.e., taken and given by the 
same task.

Figure 3. Double-clicking an event from the main trace 
view brings up the History view for the corresponding 
object.

Figure 4. The 
Communications Flow 

view can be a good place 
to start your debugging 

from, as it shows how 
messages are passed 

around within the 
application.

Remember: 
implementing thread-safe 
communication is tricky.
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When developing firmware using a 
Real-Time Operating System (RTOS), 
how do you measure the software per-
formance? One important aspect of 
performance analysis is response time, 
the time from point A to point B in the 
code, e.g., from when a task is activated 
until it is completed. This can be mea-
sured in many ways, e.g., by toggling 
an I/O pin and measuring with a logic 
analyzer, or by adding some extra code 
that measures the number of clock cy-
cles between the two points. But a basic 
measurement like this only measures the 
total amount of processor time between 
these points, without any information 
about contributing factors, such as inter-
rupts routines or other tasks that inter-
fere due to preemptive scheduling (see 
Tasks, Priorities and Analysis, page 2).

Another important performance aspect 
of performance analysis is execution 
time, the actual processor time used by 
a particular piece of code. You might 
use solutions that samples the program 
counter and provides a high level over-
view of those using the most processor 
time. This is supported by several com-
mon IDEs and most ARM-based MCUs 
provide hardware support for this pur-
pose. This is however an average mea-
surement of the typical distribution and 
is inaccurate for less frequent functions 

or tasks. Moreover, this does not reveal 
sporadic cases of unusually long execu-
tions that might cause problems such as 
timeouts.

Tracing with RTOS knowledge
To get an exact picture of the RTOS be-
havior you need a solution for RTOS-
aware tracing. Tools for this purpose 
have been around for many years, but 
only for certain operating systems and 
each tool typically only support a par-
ticular operating system. They typically 
display a horizontal Gantt chart showing 
task execution over time. This is how
ever not ideal for RTOS traces as it is 
hard to show other events in parallel, 
such as RTOS API calls.

Tracealyzer is available for several lead-
ing operating systems and provides a 
sophisticated visualization that makes it 
easier to comprehend the traces.

The main view of Tracealyzer (Figure 1, 
above) uses a vertical timeline, that al-
lows for showing not only RTOS sched-
uling and interrupts, but also other 
events such as RTOS calls or custom 
User Events, using horizontal text la-
bels. These labels “float” and spread 
out evenly to avoid overlaps. The rec
tangles in the scheduling trace corre-
spond to intervals of uninterrupted ex-

RTOS 101
Performance Analysis with Tracealyzer

Figure 1. Actors, Instances and Fragments in Tracealyzer.
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ecution. These are called “fragments” 
in Tracealyzer. The term “Actor” is used 
to denote all execution contexts in the 
traced system, such as tasks and inter-
rupt handlers. The task scheduling can 
be rendered in different ways, or “View 
Modes”, with associated buttons found 
under the Zoom buttons. In this mode, 
the fragments are ordered in multiple 
columns, one for each Actor.

One actor, many instances
Tracealyzer has a concept of “instances” 
not found in other RTOS tracing tools, 
meaning a particular execution of an Ac-
tor, i.e., from when a “job” is triggered 
until it is finished. The instance concept 
is quite central in Tracealyzer, since in-
stances are used both in the trace visu-
alization and for providing timing statis-
tics. When clicking on the actor fragment 
in the Tracealyzer main view, the entire 
Actor Instance is highlighted with a blue 
rectangle as depicted in Figure 1.

Moreover, performance metrics such as 
execution time and response time are 
calculated for each instance and can be 
visualized as detailed plots showing the 
variations over time (Figure 2 above) 
and as histograms showing the distri-
butions. The latter is shown in Figure 3 
(right) where we can see that the highest 

response time of “Control Task” is 3255 
µs in this trace, while the highest execu-
tion time is just 1087 µs, meaning that 
most of the response time is due to in-
terference from other tasks or interrupts.

It’s all connected
All views in Tracealyzer are interconnect-
ed, so by clicking on the plotted data 
points or the histogram bars, you find 
the corresponding locations in the main 
trace view and can see the detailed 
RTOS behavior behind the statistics.

Figure 2. Plot showing variations in execution time (above) and response time 
(below), over time.
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Great, but how is the stream of task 
scheduling events grouped into task in-
stances? This is fairly obvious for cyclic 
RTOS tasks, where an instance corre-
sponds to an iteration of the main loop, 
delimited by a blocking RTOS call, e.g., 
a “QueueRecieve” or a “DelayUntil” 
somewhere in the loop. But a task might 
perform multiple such calls, so how does 
Tracealyzer know where to end the cur-
rent instance and begin a new instance?

For this purpose, Tracealyzer has a con-
cept of “instance finish events” (IFEs) 
that are defined in two ways. Users don’t 
need to bother about this in most cas-
es, as there is a set of standard rules that 

specify what RTOS calls that normally 
should be counted as IFEs, such as De-
lay calls and QueueRecieve calls. This 
requires no extra configuration and is 
usually correct. However, for cases these 
implicit rules are unsuitable, you may 
generate explicit events (IFEs) that marks 
the instance as finished, this by calling 
a certain function in our recorder library. 
An example of this is shown in Figure 4 
(above), where the dark green control 
task is divided into multiple instances de-
spite no task-switches occurring at these 
points. This way you can manually de-
cide how to group events into instances, 
and thereby control the interpretation of 
the timing statistics.

Figure 4. Instance Finish Events (IFE) allows you to define your own custom intervals.
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We collect examples of how Tracealyzer 
has been of useful to our customers and 
have recreated similar issues to illustrate 
the benefits of our Tracealyzer tools for 
embedded software developers.

In this case, a customer had an issue 
with a randomly occurring reset. By plac-
ing a breakpoint in the reset exception 
handler, they figured out that it was the 
watchdog timer that had expired. The 
watchdog timer was supposed to be re-
set in a high priority task that executed 
periodically.

The ability to insert custom User Events 
comes handy in this case. They are sim-
ilar to a classic “printf()” call and events 
have here been added when the watch-
dog timer was reset and when it expired. 
User events also support data argu-
ments, and this has been used to log the 
timer value (just before resetting it) to see 
the watchdog “margin”, i.e., remaining 
time. The result can be seen above, in 
the yel-
low text 
labels.

We can 
see that 
the Sam-

plerTask is running, 
but it does not 
clear the watchdog 
timer in the last 
execution of the 
task, which resets 
the system after a 
while (“Watchdog 
reset!”). So why 
didn’t SamplerTask 
reset the watchdog 
timer? Let’s display 
Kernel Service calls 
to see what the 
task was doing.

The last event of 
SamplerTask is a call 
to xQueueSend, a 
kernel function that 
puts a message in 
a message queue. 
Note that the label 
is red, meaning that 
the xQueueSend 
call blocked the 

task, which caused a context-switch to 
ServerTask before the watchdog timer 
had been reset, which caused it to ex-
pire and reset the system.

Why the blocking?
So why was xQueueSend blocking the 
task? By double-clicking on this event 
label, we open the Object History View, 
showing all operations on this particular 
queue, “ControlQueue”, as illustrated 
on the next page.

The rightmost column shows the buff-
ered messages. We can see that the 
message queue already contains five 
messages and probably is full, hence 
the blocking. But the ControlTask is 
supposed to read the queue and make 
room, why hasn’t this worked as expect-
ed?

To investigate this, we look at how the 
watchdog margin varies over time. We 
have this information in the user event 

Customer Case

Mysterious Watchdog Reset

Figure 2. SamplerTask blocks on a send-to-queue operation.

Figure 1. In Tracealyzer, a User Event (the yellow labels) are used to log and 
display user data, somewhat similar to classic printf() statements.
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logging, and by using the User Event 
Signal Plot we can plot the watchdog 
margin over time. Adding a CPU Load 
Graph on the same timeline, we can see 
how task execution affects the watch-
dog margin, as shown below (left).

In the CPU Load Graph, we see that the 
ServerTask is executing a lot in the sec-
ond half of the trace, and this seems to 
impact the watchdog margin. Server-
Task (bright green) has higher priority 
than ControlTask (dark green), so when 
it is executing a lot in the end of the 
trace, we see that ControlTask is getting 
less CPU time. This is an intrinsic effect 
of Fixed Priority Scheduling, which is 
used by most RTOSes. Most likely, this 
could cause the full message queue, 
since ControlTask might not be able to 
read messages fast enough when the 
higher priority ServerTask is using most 

of the CPU time. This is an example of a 
Priority Inversion problem, as the Sam-
plerTask is blocked by an unrelated task 
of lower priority. A solution could be to 
change the scheduling priorities, so that 
ControlTask gets higher priority than 
ServerTask. Let’s try that and see how it 
would look.

Switching priorities solves problem
The right screenshot below shows the 
result of switching the task scheduling 
priorities between ServerTask and Con-
trolTask. The system now shows a much 
more stable behavior. The CPU load of 
SamplerTask (red here) is quite steady 
around 20%, indicating a stable periodic 
behavior, and the watchdog margin is a 
perfect line, always at 10 ms. It does not 
expire anymore – problem solved!

Figure 4. In the original system configuration (left) ControlTask could not empty the message 
queue fast enough, finally causing the watchdog timer to expire. After adjusting priorities 
everything works as intended (right). 

Figure 3. The Object History 
view can tell us a lot about 
an RTOS object. In this case, 
a message queue, one of 
the things you can see is the 
number of messages in the 
queue.
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